The Fischer-Clifford matrices of an extension group of the form 2^7:(2^5:S_6)
The split extension group A(4) = 2^7:Sp_6(2) is the affine subgroup of the symplectic group Sp_8(2) of index 255. In this paper, we use the technique of the Fischer-Clifford matrices to construct the character table of the inertia group 2^7:(2^5:S_6) of A(4) of index 63.
Main Authors: | Abraham Love Prins, Richard Llewellyn Fray |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2014-06-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://www.theoryofgroups.ir/?_action=showPDF&article=3659&_ob=db2229030defd2c35f47cd2cd8fb7539&fileName=full_text.pdf. |
Similar Items
-
The Fischer-Clifford matrices of the inertia group 2^7:O-(6,2) of a maximal subgroup 2^7:SP(6,2) in SP(8,2)
by: Richard Llewellyn Fray, et al.
Published: (2013-09-01) -
Computing the conjugacy classes and character table of a non-split extension 2<sup>6</sup>·(2<sup>5</sup>:<em>S</em><sub>6</sub>) from a split extension 2<sup>6</sup>:(2<sup>5</sup>:<em>S</em><sub>6</sub>)
by: Abraham Love Prins
Published: (2020-02-01) -
Character tables of some selected groups of extension type using Fischer-Clifford matrices
by: Monaledi, R.L.
Published: (2016) -
Fischer-clifford matrices and character tables of inertia groups of maximal subgroups of finite simple groups of extension type
by: Prins, A.L.
Published: (2017) -
The Fischer-Cliford Matrices and Character Table of the Split Extension Group 2^5:SL(5,2)
by: Rauhi I. Elkhatib
Published: (2018-02-01)