Viewpoint Analysis for Maturity Classification of Sweet Peppers

The effect of camera viewpoint and fruit orientation on the performance of a sweet pepper maturity level classification algorithm was evaluated. Image datasets of sweet peppers harvested from a commercial greenhouse were collected using two different methods, resulting in 789 RGB—Red Green Blue (ima...

Full description

Bibliographic Details
Main Authors: Ben Harel, Rick van Essen, Yisrael Parmet, Yael Edan
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/13/3783
Description
Summary:The effect of camera viewpoint and fruit orientation on the performance of a sweet pepper maturity level classification algorithm was evaluated. Image datasets of sweet peppers harvested from a commercial greenhouse were collected using two different methods, resulting in 789 RGB—Red Green Blue (images acquired in a photocell) and 417 RGB-D—Red Green Blue-Depth (images acquired by a robotic arm in the laboratory), which are published as part of this paper. Maturity level classification was performed using a random forest algorithm. Classifications of maturity level from different camera viewpoints, using a combination of viewpoints, and different fruit orientations on the plant were evaluated and compared to manual classification. Results revealed that: (1) the bottom viewpoint is the best single viewpoint for maturity level classification accuracy; (2) information from two viewpoints increases the classification by 25 and 15 percent compared to a single viewpoint for red and yellow peppers, respectively, and (3) classification performance is highly dependent on the fruit’s orientation on the plant.
ISSN:1424-8220