Impact Resistance Study of Three-Dimensional Orthogonal Carbon Fibers/BMI Resin Woven Composites
Three-dimensional woven composites have been reported to have superior fracture toughness, fatigue life and damage tolerance compared with laminated composites due to through-thickness reinforcement. These properties make them lighter replacements for traditional high-strength metals and laminated c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/19/4376 |
Summary: | Three-dimensional woven composites have been reported to have superior fracture toughness, fatigue life and damage tolerance compared with laminated composites due to through-thickness reinforcement. These properties make them lighter replacements for traditional high-strength metals and laminated composites. This paper will present impact resistance research on three-dimensional orthogonal woven composites consisting of carbon fibers/bismaleimide resin (BMI). A series of impact tests were conducted using the gas gun technique with the impacted target of 150 mm × 150 mm × 8 mm (length × width × thickness) and the cylindrical titanium projectile. The projectile velocity ranged from 180 m/s to 280 m/s, generating different results from rebound to perforation. This paper also presents a multiscale modeling strategy to investigate the damage and failure behavior of three-dimensional woven composites. The microscale and mesoscale are identified to consider the fiber/matrix scale and the tow architecture scale respectively. The macroscale model was effective with homogenized feature. Then a combined meso-macroscale model was developed with the interface definitions for component analysis in the explicit dynamic software LS-DYNA. The presented results showed reliable interface connection and can be used to study localized composites damage at a relatively high efficiency. |
---|---|
ISSN: | 1996-1944 |