Caracterización de flujos de datos usando algoritmos de agrupamiento
This paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most application...
Main Authors: | Fabián Andrés Giraldo, Elizabeth León, Jonatan Gómez |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Distrital Francisco Jose de Caldas
2013-09-01
|
Series: | Tecnura |
Subjects: | |
Online Access: | http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569 |
Similar Items
-
Algoritmo incremental de agrupamiento con traslape para el procesamiento de grandes colecciones de datos (Overlapping clustering incremental algorithm for large data collections processing)
by: Lázaro Janier González-Soler, et al.
Published: (2015-12-01) -
Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R
by: Michael Hahsler, et al.
Published: (2017-02-01) -
rEMM: Extensible Markov Model for Data Stream Clustering in R
by: Michael Hahsler, et al.
Published: (2010-10-01) -
A Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing
by: Xuyang Yan, et al.
Published: (2019-01-01) -
Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion
by: Umesh Kokate, et al.
Published: (2018-10-01)