Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells
Abstract Background While the role of Polycomb group protein-mediated “cell memory” is well established in developmental contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emerging evidence assigns a pivotal role in cell plasticity and adaptation. PR...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-12-01
|
Series: | Epigenetics & Chromatin |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13072-019-0322-5 |
id |
doaj-be85711e412b4c5586a9dbe74856e14c |
---|---|
record_format |
Article |
spelling |
doaj-be85711e412b4c5586a9dbe74856e14c2020-12-20T12:17:39ZengBMCEpigenetics & Chromatin1756-89352019-12-0112111310.1186/s13072-019-0322-5Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cellsPeng Liu0Muhammad Shuaib1Huoming Zhang2Seba Nadeef3Valerio Orlando4BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST)BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST)Core Labs, King Abdullah University of Science and TechnologyBESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST)BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST)Abstract Background While the role of Polycomb group protein-mediated “cell memory” is well established in developmental contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emerging evidence assigns a pivotal role in cell plasticity and adaptation. PRC2-Ezh1α/β signaling pathway from cytoplasm to chromatin protects skeletal muscle cells from oxidative stress. However, detailed mechanisms controlling degradation of cytoplasmic Ezh1β and assembly of canonical PRC2-Ezh1α repressive complex remain to be clarified. Results Here, we report NEDD4 ubiquitin E3 ligase, as key regulator of Ezh1β. In addition, we report that ubiquitination and degradation of Ezh1β is controlled by another layer of regulation, that is, one specific phosphorylation of serine 560 located at Ezh1β-specific C terminal. Finally, we demonstrate that also Ezh1α needs to be stabilized under stress condition and this stabilization process requires decreased association pattern between another E3 ubiquitin ligase HUWE1. Conclusions Together, these results shed light on key components that regulate PRC2-Ezh1α/β pathway to direct modulation of epigenome plasticity and transcriptional output in skeletal muscle cells.https://doi.org/10.1186/s13072-019-0322-5HUWE1NEDD4PolycombUbiquitination |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peng Liu Muhammad Shuaib Huoming Zhang Seba Nadeef Valerio Orlando |
spellingShingle |
Peng Liu Muhammad Shuaib Huoming Zhang Seba Nadeef Valerio Orlando Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells Epigenetics & Chromatin HUWE1 NEDD4 Polycomb Ubiquitination |
author_facet |
Peng Liu Muhammad Shuaib Huoming Zhang Seba Nadeef Valerio Orlando |
author_sort |
Peng Liu |
title |
Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
title_short |
Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
title_full |
Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
title_fullStr |
Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
title_full_unstemmed |
Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
title_sort |
ubiquitin ligases huwe1 and nedd4 cooperatively control signal-dependent prc2-ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells |
publisher |
BMC |
series |
Epigenetics & Chromatin |
issn |
1756-8935 |
publishDate |
2019-12-01 |
description |
Abstract Background While the role of Polycomb group protein-mediated “cell memory” is well established in developmental contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emerging evidence assigns a pivotal role in cell plasticity and adaptation. PRC2-Ezh1α/β signaling pathway from cytoplasm to chromatin protects skeletal muscle cells from oxidative stress. However, detailed mechanisms controlling degradation of cytoplasmic Ezh1β and assembly of canonical PRC2-Ezh1α repressive complex remain to be clarified. Results Here, we report NEDD4 ubiquitin E3 ligase, as key regulator of Ezh1β. In addition, we report that ubiquitination and degradation of Ezh1β is controlled by another layer of regulation, that is, one specific phosphorylation of serine 560 located at Ezh1β-specific C terminal. Finally, we demonstrate that also Ezh1α needs to be stabilized under stress condition and this stabilization process requires decreased association pattern between another E3 ubiquitin ligase HUWE1. Conclusions Together, these results shed light on key components that regulate PRC2-Ezh1α/β pathway to direct modulation of epigenome plasticity and transcriptional output in skeletal muscle cells. |
topic |
HUWE1 NEDD4 Polycomb Ubiquitination |
url |
https://doi.org/10.1186/s13072-019-0322-5 |
work_keys_str_mv |
AT pengliu ubiquitinligaseshuwe1andnedd4cooperativelycontrolsignaldependentprc2ezh1abmediatedadaptivestressresponsepathwayinskeletalmusclecells AT muhammadshuaib ubiquitinligaseshuwe1andnedd4cooperativelycontrolsignaldependentprc2ezh1abmediatedadaptivestressresponsepathwayinskeletalmusclecells AT huomingzhang ubiquitinligaseshuwe1andnedd4cooperativelycontrolsignaldependentprc2ezh1abmediatedadaptivestressresponsepathwayinskeletalmusclecells AT sebanadeef ubiquitinligaseshuwe1andnedd4cooperativelycontrolsignaldependentprc2ezh1abmediatedadaptivestressresponsepathwayinskeletalmusclecells AT valerioorlando ubiquitinligaseshuwe1andnedd4cooperativelycontrolsignaldependentprc2ezh1abmediatedadaptivestressresponsepathwayinskeletalmusclecells |
_version_ |
1724376861709959168 |