Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes.
The mammalian circadian system is composed of a light-entrainable central clock in the suprachiasmatic nuclei (SCN) of the brain and peripheral clocks in virtually any other tissue. It allows the organism to optimally adjust metabolic, physiological and behavioral functions to the physiological need...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3873389?pdf=render |
id |
doaj-be7676d756794327b96f1524d9f45afb |
---|---|
record_format |
Article |
spelling |
doaj-be7676d756794327b96f1524d9f45afb2020-11-24T21:50:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-01812e8360210.1371/journal.pone.0083602Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes.Eugin DesticiEdwin H JacobsFilippo TamaniniMaarten LoosGijsbertus T J van der HorstMałgorzata OklejewiczThe mammalian circadian system is composed of a light-entrainable central clock in the suprachiasmatic nuclei (SCN) of the brain and peripheral clocks in virtually any other tissue. It allows the organism to optimally adjust metabolic, physiological and behavioral functions to the physiological needs it will have at specific time of the day. According to the resonance theory, such rhythms are only advantageous to an organism when in tune with the environment, which is illustrated by the adverse health effects originating from chronic circadian disruption by jetlag and shift work. Using short-period Cry1 and long-period Cry2 deficient mice as models for morningness and eveningness, respectively, we explored the effect of chronotype on the phase relationship between the central SCN clock and peripheral clocks in other organs. Whereas the behavioral activity patterns and circadian gene expression in the SCN of light-entrained Cry1(-/-) and Cry2(-/-) mice largely overlapped with that of wild type mice, expression of clock and clock controlled genes in liver, kidney, small intestine, and skin was shown to be markedly phase-advanced or phase-delayed, respectively. Likewise, circadian rhythms in urinary corticosterone were shown to display a significantly altered phase relationship similar to that of gene expression in peripheral tissues. We show that the daily dissonance between peripheral clocks and the environment did not affect the lifespan of Cry1(-/-) or Cry2(-/-) mice. Nonetheless, the phase-shifted peripheral clocks in light-entrained mice with morningness and eveningness-like phenotypes may have implications for personalized preventive and therapeutic (i.e. chronomodulation-based) health care for people with early and late chronotypes.http://europepmc.org/articles/PMC3873389?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eugin Destici Edwin H Jacobs Filippo Tamanini Maarten Loos Gijsbertus T J van der Horst Małgorzata Oklejewicz |
spellingShingle |
Eugin Destici Edwin H Jacobs Filippo Tamanini Maarten Loos Gijsbertus T J van der Horst Małgorzata Oklejewicz Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. PLoS ONE |
author_facet |
Eugin Destici Edwin H Jacobs Filippo Tamanini Maarten Loos Gijsbertus T J van der Horst Małgorzata Oklejewicz |
author_sort |
Eugin Destici |
title |
Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. |
title_short |
Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. |
title_full |
Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. |
title_fullStr |
Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. |
title_full_unstemmed |
Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. |
title_sort |
altered phase-relationship between peripheral oscillators and environmental time in cry1 or cry2 deficient mouse models for early and late chronotypes. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
The mammalian circadian system is composed of a light-entrainable central clock in the suprachiasmatic nuclei (SCN) of the brain and peripheral clocks in virtually any other tissue. It allows the organism to optimally adjust metabolic, physiological and behavioral functions to the physiological needs it will have at specific time of the day. According to the resonance theory, such rhythms are only advantageous to an organism when in tune with the environment, which is illustrated by the adverse health effects originating from chronic circadian disruption by jetlag and shift work. Using short-period Cry1 and long-period Cry2 deficient mice as models for morningness and eveningness, respectively, we explored the effect of chronotype on the phase relationship between the central SCN clock and peripheral clocks in other organs. Whereas the behavioral activity patterns and circadian gene expression in the SCN of light-entrained Cry1(-/-) and Cry2(-/-) mice largely overlapped with that of wild type mice, expression of clock and clock controlled genes in liver, kidney, small intestine, and skin was shown to be markedly phase-advanced or phase-delayed, respectively. Likewise, circadian rhythms in urinary corticosterone were shown to display a significantly altered phase relationship similar to that of gene expression in peripheral tissues. We show that the daily dissonance between peripheral clocks and the environment did not affect the lifespan of Cry1(-/-) or Cry2(-/-) mice. Nonetheless, the phase-shifted peripheral clocks in light-entrained mice with morningness and eveningness-like phenotypes may have implications for personalized preventive and therapeutic (i.e. chronomodulation-based) health care for people with early and late chronotypes. |
url |
http://europepmc.org/articles/PMC3873389?pdf=render |
work_keys_str_mv |
AT eugindestici alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes AT edwinhjacobs alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes AT filippotamanini alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes AT maartenloos alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes AT gijsbertustjvanderhorst alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes AT małgorzataoklejewicz alteredphaserelationshipbetweenperipheraloscillatorsandenvironmentaltimeincry1orcry2deficientmousemodelsforearlyandlatechronotypes |
_version_ |
1725883206295617536 |