On the aposteriori error estimates for finite‐element solutions
The analysis of the accuracy of the aposteriori error estimation procedure for finite‐element solutions is presented. The function Y — y is used as an aposteriori error estimator, here y ∈ S 0 1,Δ is the finite‐element solution of the given problem and Y ∈ S 0 2,Δis the high order solution of the s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
1998-12-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9985 |
id |
doaj-be636e9d173b4d448aae7db36bdbf007 |
---|---|
record_format |
Article |
spelling |
doaj-be636e9d173b4d448aae7db36bdbf0072021-07-02T10:27:41ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35101998-12-013110.3846/13926292.1998.9637084On the aposteriori error estimates for finite‐element solutionsRaimondas Èiegis0Institute of Mathematics and Informatics , Vilnius Gediminas Technical University , Akademijos 4, Vilnius, LT‐2600, Lithuania The analysis of the accuracy of the aposteriori error estimation procedure for finite‐element solutions is presented. The function Y — y is used as an aposteriori error estimator, here y ∈ S 0 1,Δ is the finite‐element solution of the given problem and Y ∈ S 0 2,Δis the high order solution of the same problem. The second order accuracy is proved for this error estimator in the L 2, H 1 and L8 norms. Results of numerical experiments are presented. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9985- |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Raimondas Èiegis |
spellingShingle |
Raimondas Èiegis On the aposteriori error estimates for finite‐element solutions Mathematical Modelling and Analysis - |
author_facet |
Raimondas Èiegis |
author_sort |
Raimondas Èiegis |
title |
On the aposteriori error estimates for finite‐element solutions |
title_short |
On the aposteriori error estimates for finite‐element solutions |
title_full |
On the aposteriori error estimates for finite‐element solutions |
title_fullStr |
On the aposteriori error estimates for finite‐element solutions |
title_full_unstemmed |
On the aposteriori error estimates for finite‐element solutions |
title_sort |
on the aposteriori error estimates for finite‐element solutions |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
1998-12-01 |
description |
The analysis of the accuracy of the aposteriori error estimation procedure for finite‐element solutions is presented. The function Y — y is used as an aposteriori error estimator, here y ∈ S 0 1,Δ is the finite‐element solution of the given problem and Y ∈ S 0 2,Δis the high order solution of the same problem. The second order accuracy is proved for this error estimator in the L 2, H 1 and L8 norms. Results of numerical experiments are presented.
First Published Online: 14 Oct 2010
|
topic |
- |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9985 |
work_keys_str_mv |
AT raimondaseiegis ontheaposteriorierrorestimatesforfiniteelementsolutions |
_version_ |
1721332043742183424 |