Bayesian Spatial and Trend Analysis on Ozone Extreme Data in South Korea: 1991–2015

Background. Extreme events like flooding, extreme temperature, and ozone depletion are happening in every corner of the world. Thus, the need to model such rare events having enormous damage has been getting priorities in most countries of the world. Methods. The dataset contains the ozone data from...

Full description

Bibliographic Details
Main Author: Cheru Atsmegiorgis Kitabo
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2020/8839455
Description
Summary:Background. Extreme events like flooding, extreme temperature, and ozone depletion are happening in every corner of the world. Thus, the need to model such rare events having enormous damage has been getting priorities in most countries of the world. Methods. The dataset contains the ozone data from 29 representative air monitoring sites in South Korea collected from 1991 to 2015. Spatial generalized extreme value (GEV) using maximum likelihood estimation (MLE) and two max-stable and Bayesian kriging models are the statistical models used for analysis. Moreover, predictive performances of these statistical models are compared using measures like root-mean-squared error (RMSE), mean absolute error (MAE), relative bias (rBIAS), and relative mean separation (rMSEP) have been utilized. Results. From the time plot of ozone data, extreme ozone concentration is increasing linearly within the specified period. The return level of ozone concentration after 10, 25, 50, and 100 years have been forecasted and showed that there was an increasing trend in ozone extremes. High spatial variability of ozone extreme was observed, and those areas around the territories were having extreme ozone concentration than the centers. Moreover, Bayesian Kriging brought about relatively the minimum RMSE compared to the other models. Conclusion. The extreme ozone concentration has clearly showed a positive trend and spatial variation. Moreover, among the models considered in the paper, the Bayesian Kriging has been chosen as the better model.
ISSN:1687-9309
1687-9317