Structure determination of an amorphous drug through large-scale NMR predictions

Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level s...

Full description

Bibliographic Details
Main Authors: Manuel Cordova, Martins Balodis, Albert Hofstetter, Federico Paruzzo, Sten O. Nilsson Lill, Emma S. E. Eriksson, Pierrick Berruyer, Bruno Simões de Almeida, Michael J. Quayle, Stefan T. Norberg, Anna Svensk Ankarberg, Staffan Schantz, Lyndon Emsley
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-23208-7
id doaj-be50705d880e426e950afb5d4b6e95a0
record_format Article
spelling doaj-be50705d880e426e950afb5d4b6e95a02021-05-23T11:12:08ZengNature Publishing GroupNature Communications2041-17232021-05-011211810.1038/s41467-021-23208-7Structure determination of an amorphous drug through large-scale NMR predictionsManuel Cordova0Martins Balodis1Albert Hofstetter2Federico Paruzzo3Sten O. Nilsson Lill4Emma S. E. Eriksson5Pierrick Berruyer6Bruno Simões de Almeida7Michael J. Quayle8Stefan T. Norberg9Anna Svensk Ankarberg10Staffan Schantz11Lyndon Emsley12Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZenecaEarly Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZenecaInstitut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZenecaOral Product Development, Pharmaceutical Technology & Development, Operations, AstraZenecaOral Product Development, Pharmaceutical Technology & Development, Operations, AstraZenecaOral Product Development, Pharmaceutical Technology & Development, Operations, AstraZenecaInstitut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL)Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.https://doi.org/10.1038/s41467-021-23208-7
collection DOAJ
language English
format Article
sources DOAJ
author Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
spellingShingle Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
Structure determination of an amorphous drug through large-scale NMR predictions
Nature Communications
author_facet Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
author_sort Manuel Cordova
title Structure determination of an amorphous drug through large-scale NMR predictions
title_short Structure determination of an amorphous drug through large-scale NMR predictions
title_full Structure determination of an amorphous drug through large-scale NMR predictions
title_fullStr Structure determination of an amorphous drug through large-scale NMR predictions
title_full_unstemmed Structure determination of an amorphous drug through large-scale NMR predictions
title_sort structure determination of an amorphous drug through large-scale nmr predictions
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-05-01
description Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.
url https://doi.org/10.1038/s41467-021-23208-7
work_keys_str_mv AT manuelcordova structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT martinsbalodis structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT alberthofstetter structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT federicoparuzzo structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT stenonilssonlill structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT emmaseeriksson structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT pierrickberruyer structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT brunosimoesdealmeida structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT michaeljquayle structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT stefantnorberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT annasvenskankarberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT staffanschantz structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT lyndonemsley structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
_version_ 1721430109710188544