Evidence of a characteristic ignition length of a flame
Ignition process of vegetation from a cylindrical flame radiation is examined using Koo and Pagni [1] model. The radiation flux is power-law decreasing with distance [2], while the ignition time increases exponentially. This last behavior yields a characteristic length of fuel ignition from a flame,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2013-03-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/20134401002 |
Summary: | Ignition process of vegetation from a cylindrical flame radiation is examined using Koo and Pagni [1] model. The radiation flux is power-law decreasing with distance [2], while the ignition time increases exponentially. This last behavior yields a characteristic length of fuel ignition from a flame, inducing a percolation type phase transition. |
---|---|
ISSN: | 2100-014X |