Numerical studies on non-linearity of added resistance and ship motions of KVLCC2 in short and long waves

In this study, numerical simulations for the prediction of added resistance for KVLCC2 with varying wave steepness are performed using a Computational Fluid Dynamics (CFD) method and a 3-D linear potential method, and then the non-linearities of added resistance and ship motions are investigated in...

Full description

Bibliographic Details
Main Authors: Olgun Hizir, Mingyu Kim, Osman Turan, Alexander Day, Atilla Incecik, Yongwon Lee
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:International Journal of Naval Architecture and Ocean Engineering
Online Access:http://www.sciencedirect.com/science/article/pii/S2092678217301000
Description
Summary:In this study, numerical simulations for the prediction of added resistance for KVLCC2 with varying wave steepness are performed using a Computational Fluid Dynamics (CFD) method and a 3-D linear potential method, and then the non-linearities of added resistance and ship motions are investigated in regular short and long waves. Firstly, grid convergence tests in short and long waves are carried out to establish an optimal mesh system for CFD simulations. Secondly, numerical simulations are performed to predict ship added resistance and vertical motion responses in short and long waves and the results are verified using the available experimental data. Finally, the non-linearities of added resistance and ship motions with unsteady wave patterns in the time domain are investigated with the increase in wave steepness in both short and long waves. The present systematic study demonstrates that the numerical results have a reasonable agreement with the experimental data and emphasizes the non-linearity in the prediction of the added resistance and the ship motions with the increasing wave steepness in short and long waves. Keywords: Added resistance, Wave steepness, Short waves, Potential flow, CFD, KVLCC2
ISSN:2092-6782