Oxygen Evolution Reaction on a N-Doped Co0.5-Terminated Co3o4 (001) Surface

Recent experimental findings suggest that the catalytic activity of Co3O4 for oxygen evolution reaction (OER) could be improved by nitrogen doping. We present preliminary OER modelling on a N-doped Co3O4 surface, with varying concentration of the dopant and its spatial distribution around Cooct and...

Full description

Bibliographic Details
Main Authors: Kaptagay Gulbanu A., Sandibaeva Nazira A., Inerbaev Talgat M., Mastrikov Yuri A., Kotomin Eugene A.
Format: Article
Language:English
Published: Sciendo 2020-12-01
Series:Proceedings of the Latvian Academy of Sciences. Section B, Natural Sciences
Subjects:
oer
Online Access:https://doi.org/10.2478/prolas-2020-0058
Description
Summary:Recent experimental findings suggest that the catalytic activity of Co3O4 for oxygen evolution reaction (OER) could be improved by nitrogen doping. We present preliminary OER modelling on a N-doped Co3O4 surface, with varying concentration of the dopant and its spatial distribution around Cooct and Cotet adsorption sites. The overpotential was calculated for two adsorption sites on seven types of N-doped Co3O4 surface. The largest calculated overpotential value for a N-doped surface was ~1V.
ISSN:1407-009X