The Beta-Amyloid Protein of Alzheimer’s Disease: Communication Breakdown by Modifying the Neuronal Cytoskeleton
Alzheimer’s disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | International Journal of Alzheimer's Disease |
Online Access: | http://dx.doi.org/10.1155/2013/910502 |
Summary: | Alzheimer’s disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β-amyloid protein (Aβ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating Aβ-rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of Aβ-mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to Aβ-dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain. |
---|---|
ISSN: | 2090-8024 2090-0252 |