In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops

Drought is one of the major environmental stresses that produces adverse effects on plants. Vast areas of agricultural land is susceptible to drought. Drought induced yield loss of crops has negative effects on the economy of a country. Among phytohormones, Abscisic Acid (ABA) induces abiotic stress...

Full description

Bibliographic Details
Main Authors: Bushra Shaheen, Tayyaba Shaheen, Shahid Ur Rehman, Mahmood Ur Rehman, Muhammad Nawaz, Muhammad Tahir Ul Qamar
Format: Article
Language:English
Published: Bioresource Research Center (BRC), Islamabad 2016-05-01
Series:Journal of Bioresource Management
Subjects:
aba
Online Access:https://corescholar.libraries.wright.edu/jbm/vol3/iss1/7/
id doaj-be16669dcd0a42c4a22071ad8b0ad50e
record_format Article
spelling doaj-be16669dcd0a42c4a22071ad8b0ad50e2020-11-25T02:05:43ZengBioresource Research Center (BRC), IslamabadJournal of Bioresource Management 2309-38542309-38542016-05-013110.35691/JBM.5102.0045In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in CropsBushra Shaheen0Tayyaba Shaheen1Shahid Ur Rehman2Mahmood Ur Rehman3Muhammad Nawaz4Muhammad Tahir Ul Qamar5Government College University, Faisalabad, PakistanGovernment College University, Faisalabad, PakistanUniversity of Agriculture, Faisalabad, PakistanGovernment College University, Faisalabad, PakistanGovernment College University, Faisalabad, PakistanGovernment College University, Faisalabad, PakistanDrought is one of the major environmental stresses that produces adverse effects on plants. Vast areas of agricultural land is susceptible to drought. Drought induced yield loss of crops has negative effects on the economy of a country. Among phytohormones, Abscisic Acid (ABA) induces abiotic stress tolerance in plants, and directs a complex regulatory network involving multiple transporters, up-regulation of ABA biosynthesis genes and various signalling pathways that enable plants to withstand low water availability. The current study was designed to understand ABA synthesis, its transport across the plant during stress and its mechanism to induce stomatal closure by using different in silico tools, because the complete ABA mediated drought tolerance has not yet been reported. In the current study, seven transporters, four ABA biosynthesis enzymes, deconjugation enzyme and a core complex of ABA signalling was verified through Modeller 9.10 and Molecular Operating Environment (MOE).The Intel [R] Xenon [R] CPU-E5420 @ 2.50 GHz system with 4 GB of RAM and the 11.4 (X 86_64) operating system was used for molecular docking. Protein-ligand interactions were analysed by the LigPolt feature of MOE. Docking studies helped to understand the behaviour of ABA biosynthesis enzymes, ABA transporters and ABA core complex, which in turn helps to comprehend the whole mechanism of ABA synthesis in plants during drought stress. Computational models of AtABCG11, AtBG1, AtABCG12,AtABCB14,AtABCG22,AtABCG25,AtABCG32, AtABCG40, NCED, ABA2 and AAO were used for docking. Docking analysis has shown promising results for all the models, except AtABCG11 and AtABCG12. Residues of AtABCG11 and AtABCG12 did not show binding with the ABA, as these transporters are involved in cuticle formation. Findings of this study will strengthen the work on ABA drought tolerance in plants and help to produce drought resistant crops globally.https://corescholar.libraries.wright.edu/jbm/vol3/iss1/7/droughtabaarabidopsisdrought resistant crops
collection DOAJ
language English
format Article
sources DOAJ
author Bushra Shaheen
Tayyaba Shaheen
Shahid Ur Rehman
Mahmood Ur Rehman
Muhammad Nawaz
Muhammad Tahir Ul Qamar
spellingShingle Bushra Shaheen
Tayyaba Shaheen
Shahid Ur Rehman
Mahmood Ur Rehman
Muhammad Nawaz
Muhammad Tahir Ul Qamar
In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
Journal of Bioresource Management
drought
aba
arabidopsis
drought resistant crops
author_facet Bushra Shaheen
Tayyaba Shaheen
Shahid Ur Rehman
Mahmood Ur Rehman
Muhammad Nawaz
Muhammad Tahir Ul Qamar
author_sort Bushra Shaheen
title In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
title_short In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
title_full In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
title_fullStr In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
title_full_unstemmed In silico Mechanistic Study of Abscisic Acid (ABA) Mediated Drought Tolerance in Crops
title_sort in silico mechanistic study of abscisic acid (aba) mediated drought tolerance in crops
publisher Bioresource Research Center (BRC), Islamabad
series Journal of Bioresource Management
issn 2309-3854
2309-3854
publishDate 2016-05-01
description Drought is one of the major environmental stresses that produces adverse effects on plants. Vast areas of agricultural land is susceptible to drought. Drought induced yield loss of crops has negative effects on the economy of a country. Among phytohormones, Abscisic Acid (ABA) induces abiotic stress tolerance in plants, and directs a complex regulatory network involving multiple transporters, up-regulation of ABA biosynthesis genes and various signalling pathways that enable plants to withstand low water availability. The current study was designed to understand ABA synthesis, its transport across the plant during stress and its mechanism to induce stomatal closure by using different in silico tools, because the complete ABA mediated drought tolerance has not yet been reported. In the current study, seven transporters, four ABA biosynthesis enzymes, deconjugation enzyme and a core complex of ABA signalling was verified through Modeller 9.10 and Molecular Operating Environment (MOE).The Intel [R] Xenon [R] CPU-E5420 @ 2.50 GHz system with 4 GB of RAM and the 11.4 (X 86_64) operating system was used for molecular docking. Protein-ligand interactions were analysed by the LigPolt feature of MOE. Docking studies helped to understand the behaviour of ABA biosynthesis enzymes, ABA transporters and ABA core complex, which in turn helps to comprehend the whole mechanism of ABA synthesis in plants during drought stress. Computational models of AtABCG11, AtBG1, AtABCG12,AtABCB14,AtABCG22,AtABCG25,AtABCG32, AtABCG40, NCED, ABA2 and AAO were used for docking. Docking analysis has shown promising results for all the models, except AtABCG11 and AtABCG12. Residues of AtABCG11 and AtABCG12 did not show binding with the ABA, as these transporters are involved in cuticle formation. Findings of this study will strengthen the work on ABA drought tolerance in plants and help to produce drought resistant crops globally.
topic drought
aba
arabidopsis
drought resistant crops
url https://corescholar.libraries.wright.edu/jbm/vol3/iss1/7/
work_keys_str_mv AT bushrashaheen insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
AT tayyabashaheen insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
AT shahidurrehman insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
AT mahmoodurrehman insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
AT muhammadnawaz insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
AT muhammadtahirulqamar insilicomechanisticstudyofabscisicacidabamediateddroughttoleranceincrops
_version_ 1724937437393715200