Inequalities and asymptotics for some moment integrals

Abstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the int...

Full description

Bibliographic Details
Main Author: Faruk Abi-Khuzam
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1532-7
id doaj-be1059cf2b784a499df05934d2d2d30f
record_format Article
spelling doaj-be1059cf2b784a499df05934d2d2d30f2020-11-24T21:53:38ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-10-01201711810.1186/s13660-017-1532-7Inequalities and asymptotics for some moment integralsFaruk Abi-Khuzam0Department of Mathematics, American University of BeirutAbstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the integral as α → ∞ $\alpha\rightarrow\infty$ . The case I ( α , α ) $I(\alpha,\alpha)$ corresponds to the asymptotics of Ball’s inequality, and I ( α , [ α ] − 1 ) $I(\alpha,[\alpha]-1)$ corresponds to a kind of novel “oscillatory” behavior.http://link.springer.com/article/10.1186/s13660-017-1532-7Ball’s inequalityasymptoticscube slicingmoments
collection DOAJ
language English
format Article
sources DOAJ
author Faruk Abi-Khuzam
spellingShingle Faruk Abi-Khuzam
Inequalities and asymptotics for some moment integrals
Journal of Inequalities and Applications
Ball’s inequality
asymptotics
cube slicing
moments
author_facet Faruk Abi-Khuzam
author_sort Faruk Abi-Khuzam
title Inequalities and asymptotics for some moment integrals
title_short Inequalities and asymptotics for some moment integrals
title_full Inequalities and asymptotics for some moment integrals
title_fullStr Inequalities and asymptotics for some moment integrals
title_full_unstemmed Inequalities and asymptotics for some moment integrals
title_sort inequalities and asymptotics for some moment integrals
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2017-10-01
description Abstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the integral as α → ∞ $\alpha\rightarrow\infty$ . The case I ( α , α ) $I(\alpha,\alpha)$ corresponds to the asymptotics of Ball’s inequality, and I ( α , [ α ] − 1 ) $I(\alpha,[\alpha]-1)$ corresponds to a kind of novel “oscillatory” behavior.
topic Ball’s inequality
asymptotics
cube slicing
moments
url http://link.springer.com/article/10.1186/s13660-017-1532-7
work_keys_str_mv AT farukabikhuzam inequalitiesandasymptoticsforsomemomentintegrals
_version_ 1725870947556130816