Inequalities and asymptotics for some moment integrals
Abstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the int...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-10-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1532-7 |
id |
doaj-be1059cf2b784a499df05934d2d2d30f |
---|---|
record_format |
Article |
spelling |
doaj-be1059cf2b784a499df05934d2d2d30f2020-11-24T21:53:38ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-10-01201711810.1186/s13660-017-1532-7Inequalities and asymptotics for some moment integralsFaruk Abi-Khuzam0Department of Mathematics, American University of BeirutAbstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the integral as α → ∞ $\alpha\rightarrow\infty$ . The case I ( α , α ) $I(\alpha,\alpha)$ corresponds to the asymptotics of Ball’s inequality, and I ( α , [ α ] − 1 ) $I(\alpha,[\alpha]-1)$ corresponds to a kind of novel “oscillatory” behavior.http://link.springer.com/article/10.1186/s13660-017-1532-7Ball’s inequalityasymptoticscube slicingmoments |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Faruk Abi-Khuzam |
spellingShingle |
Faruk Abi-Khuzam Inequalities and asymptotics for some moment integrals Journal of Inequalities and Applications Ball’s inequality asymptotics cube slicing moments |
author_facet |
Faruk Abi-Khuzam |
author_sort |
Faruk Abi-Khuzam |
title |
Inequalities and asymptotics for some moment integrals |
title_short |
Inequalities and asymptotics for some moment integrals |
title_full |
Inequalities and asymptotics for some moment integrals |
title_fullStr |
Inequalities and asymptotics for some moment integrals |
title_full_unstemmed |
Inequalities and asymptotics for some moment integrals |
title_sort |
inequalities and asymptotics for some moment integrals |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2017-10-01 |
description |
Abstract For α > β − 1 > 0 $\alpha>\beta-1>0$ , we obtain two-sided inequalities for the moment integral I ( α , β ) = ∫ R | x | − β | sin x | α d x $I(\alpha,\beta)=\int_{\mathbb{R}}|x|^{-\beta}|\sin x|^{\alpha}\,dx$ . These are then used to give the exact asymptotic behavior of the integral as α → ∞ $\alpha\rightarrow\infty$ . The case I ( α , α ) $I(\alpha,\alpha)$ corresponds to the asymptotics of Ball’s inequality, and I ( α , [ α ] − 1 ) $I(\alpha,[\alpha]-1)$ corresponds to a kind of novel “oscillatory” behavior. |
topic |
Ball’s inequality asymptotics cube slicing moments |
url |
http://link.springer.com/article/10.1186/s13660-017-1532-7 |
work_keys_str_mv |
AT farukabikhuzam inequalitiesandasymptoticsforsomemomentintegrals |
_version_ |
1725870947556130816 |