On Third-Order Linear Recurrent Functions
A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2019/9489437 |
id |
doaj-be05204f0ece44f89621fe53df2b35d7 |
---|---|
record_format |
Article |
spelling |
doaj-be05204f0ece44f89621fe53df2b35d72020-11-24T21:50:28ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2019-01-01201910.1155/2019/94894379489437On Third-Order Linear Recurrent FunctionsKodjo Essonana Magnani0Département de Mathématiques, Université de Lomé, BP 1515 Lomé, TogoA function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2.http://dx.doi.org/10.1155/2019/9489437 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kodjo Essonana Magnani |
spellingShingle |
Kodjo Essonana Magnani On Third-Order Linear Recurrent Functions Discrete Dynamics in Nature and Society |
author_facet |
Kodjo Essonana Magnani |
author_sort |
Kodjo Essonana Magnani |
title |
On Third-Order Linear Recurrent Functions |
title_short |
On Third-Order Linear Recurrent Functions |
title_full |
On Third-Order Linear Recurrent Functions |
title_fullStr |
On Third-Order Linear Recurrent Functions |
title_full_unstemmed |
On Third-Order Linear Recurrent Functions |
title_sort |
on third-order linear recurrent functions |
publisher |
Hindawi Limited |
series |
Discrete Dynamics in Nature and Society |
issn |
1026-0226 1607-887X |
publishDate |
2019-01-01 |
description |
A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2. |
url |
http://dx.doi.org/10.1155/2019/9489437 |
work_keys_str_mv |
AT kodjoessonanamagnani onthirdorderlinearrecurrentfunctions |
_version_ |
1725883756146851840 |