On Third-Order Linear Recurrent Functions

A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root...

Full description

Bibliographic Details
Main Author: Kodjo Essonana Magnani
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2019/9489437
id doaj-be05204f0ece44f89621fe53df2b35d7
record_format Article
spelling doaj-be05204f0ece44f89621fe53df2b35d72020-11-24T21:50:28ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2019-01-01201910.1155/2019/94894379489437On Third-Order Linear Recurrent FunctionsKodjo Essonana Magnani0Département de Mathématiques, Université de Lomé, BP 1515 Lomé, TogoA function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2.http://dx.doi.org/10.1155/2019/9489437
collection DOAJ
language English
format Article
sources DOAJ
author Kodjo Essonana Magnani
spellingShingle Kodjo Essonana Magnani
On Third-Order Linear Recurrent Functions
Discrete Dynamics in Nature and Society
author_facet Kodjo Essonana Magnani
author_sort Kodjo Essonana Magnani
title On Third-Order Linear Recurrent Functions
title_short On Third-Order Linear Recurrent Functions
title_full On Third-Order Linear Recurrent Functions
title_fullStr On Third-Order Linear Recurrent Functions
title_full_unstemmed On Third-Order Linear Recurrent Functions
title_sort on third-order linear recurrent functions
publisher Hindawi Limited
series Discrete Dynamics in Nature and Society
issn 1026-0226
1607-887X
publishDate 2019-01-01
description A function ψ:R→R is said to be a Tribonacci function with period p if ψ(x+3p)=ψ(x+2p)+ψ(x+p)+ψ(x), for all x∈R. In this paper, we present some properties on the Tribonacci functions with period p. We show that if ψ is a Tribonacci function with period p, then limx→∞ψ(x+p)/ψ(x)=β, where β is the root of the equation x3-x2-x-1=0 such that 1<β<2.
url http://dx.doi.org/10.1155/2019/9489437
work_keys_str_mv AT kodjoessonanamagnani onthirdorderlinearrecurrentfunctions
_version_ 1725883756146851840