Assessing the impacts of mining activities on zooplankton functional diversity

Abstract Aim Mining activities generate countless environmental impacts, including heavy-metal contamination, sorting and increased turbidity. In aquatic ecosystems these impacts can drastically affect the initial links of the food chain, such as zooplankton. Methods To evaluate how the different...

Full description

Bibliographic Details
Main Authors: Francisco Wagner Araujo Moreira, Mariângela Garcia Praça Leite, Maria Augusta Gonçalves Fujaco, Fellipe Pinheiro Chagas Mendonça, Larissa Paraguassú Campos, Eneida Maria Eskinazi-Sant’Anna
Format: Article
Language:English
Published: Associação Brasileira de Limnologia
Series:Acta Limnologica Brasiliensia
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2016000100309&lng=en&tlng=en
Description
Summary:Abstract Aim Mining activities generate countless environmental impacts, including heavy-metal contamination, sorting and increased turbidity. In aquatic ecosystems these impacts can drastically affect the initial links of the food chain, such as zooplankton. Methods To evaluate how the different mining activities can influence the structure and functional diversity of zooplankton, we investigated the geochemical characteristics of the water and sediment in two small impoundments impacted by different mining activities (kaolin and iron extraction). We also explored zooplankton composition, species diversity and functional diversity (feeding guilds taxa). Results As expected, the water and the sediment of both of the reservoirs showed high concentrations of trace elements, particularly Al, Ba, Fe, Mg, Mn, Sr and Zn. Zooplankton biomass and diversity were markedly reduced (< 12 μg.DW.L-1 and H’ < 1.5, respectively), and negatively correlated with turbidity and total suspended solids. Small microphages dominated the trophic composition of zooplankton, and an alternation of trophic guilds was not observed, since the dynamics of raptorial organisms was essentially linked to the temporal fluctuation of a single species of rotifer (Polyarthra cf. dolichoptera). Conclusions In addition to changes in the aquatic habitat and zooplankton composition, the functional niches were also affected by the mining impacts. The use of the functional diversity analysis can emerge as a valuable approach to understand how zooplankton communities respond to drastic environmental changes.
ISSN:2179-975X