Summary: | Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms which can substitute for the ordinary differential equation, describing 1-parametric function time-series. A new method of the short-term power demand forecasting, based on similarity relations of several subsequent day progress cycles at the same time points is presented and tested on 2 datasets. Comparisons were done with the artificial neural network using the same prediction method.
|