The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2015-02-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805 |
id |
doaj-bded18bb9da04ed7b9b569d958d6b6b8 |
---|---|
record_format |
Article |
spelling |
doaj-bded18bb9da04ed7b9b569d958d6b6b82020-11-24T22:24:24ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882015-02-0133110912310.5269/bspm.v33i1.2180510805The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by MusielakN. Subramanian0SASTRA University Department of MathematicsIn this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805analytic sequencedouble sequences$\chi^{2}$ spacedifference sequence spaceMusielak - modulus function$p-$ metric spaceLacunary sequenceideal |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N. Subramanian |
spellingShingle |
N. Subramanian The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak Boletim da Sociedade Paranaense de Matemática analytic sequence double sequences $\chi^{2}$ space difference sequence space Musielak - modulus function $p-$ metric space Lacunary sequence ideal |
author_facet |
N. Subramanian |
author_sort |
N. Subramanian |
title |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak |
title_short |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak |
title_full |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak |
title_fullStr |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak |
title_full_unstemmed |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak |
title_sort |
generalized difference of $\chi^{2}$ over $p-$ metric spaces defined by musielak |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2015-02-01 |
description |
In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces. |
topic |
analytic sequence double sequences $\chi^{2}$ space difference sequence space Musielak - modulus function $p-$ metric space Lacunary sequence ideal |
url |
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805 |
work_keys_str_mv |
AT nsubramanian thegeneralizeddifferenceofchi2overpmetricspacesdefinedbymusielak AT nsubramanian generalizeddifferenceofchi2overpmetricspacesdefinedbymusielak |
_version_ |
1725761542064963584 |