The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak

In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\...

Full description

Bibliographic Details
Main Author: N. Subramanian
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2015-02-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805
id doaj-bded18bb9da04ed7b9b569d958d6b6b8
record_format Article
spelling doaj-bded18bb9da04ed7b9b569d958d6b6b82020-11-24T22:24:24ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882015-02-0133110912310.5269/bspm.v33i1.2180510805The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by MusielakN. Subramanian0SASTRA University Department of MathematicsIn this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805analytic sequencedouble sequences$\chi^{2}$ spacedifference sequence spaceMusielak - modulus function$p-$ metric spaceLacunary sequenceideal
collection DOAJ
language English
format Article
sources DOAJ
author N. Subramanian
spellingShingle N. Subramanian
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
Boletim da Sociedade Paranaense de Matemática
analytic sequence
double sequences
$\chi^{2}$ space
difference sequence space
Musielak - modulus function
$p-$ metric space
Lacunary sequence
ideal
author_facet N. Subramanian
author_sort N. Subramanian
title The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
title_short The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
title_full The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
title_fullStr The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
title_full_unstemmed The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
title_sort generalized difference of $\chi^{2}$ over $p-$ metric spaces defined by musielak
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2015-02-01
description In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces.
topic analytic sequence
double sequences
$\chi^{2}$ space
difference sequence space
Musielak - modulus function
$p-$ metric space
Lacunary sequence
ideal
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21805
work_keys_str_mv AT nsubramanian thegeneralizeddifferenceofchi2overpmetricspacesdefinedbymusielak
AT nsubramanian generalizeddifferenceofchi2overpmetricspacesdefinedbymusielak
_version_ 1725761542064963584