Outsourcing Attributed-Based Ranked Searchable Encryption With Revocation for Cloud Storage

With the rapid growth of the cloud computing and strengthening of security requirements, encrypted cloud services are of importance and benefit. For the huge ciphertext data stored in the cloud, many secure searchable methods based on cryptography with keywords are introduced. In all the methods, at...

Full description

Bibliographic Details
Main Authors: Leyou Zhang, Jian Su, Yi Mu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9108226/
Description
Summary:With the rapid growth of the cloud computing and strengthening of security requirements, encrypted cloud services are of importance and benefit. For the huge ciphertext data stored in the cloud, many secure searchable methods based on cryptography with keywords are introduced. In all the methods, attribute-based searchable encryption is considered as the truthful and efficient method since it supports the flexible access policy. However, the attribute-based system suffers from two defects when applied in the cloud storage. One of them is that the huge data in the cloud makes the users process all the relevant files related to the certain keyword. For the other side, the users and users' attributes inevitably change frequently. Therefore, attribute revocation is also an important problem in the system. To overcome these drawbacks, an attribute-based ranked searchable encryption scheme with revocation is proposed. We rank the ciphertext documents according to the TF×IDF principle, and then only return the relevant top-k files. Besides the decryption sever, an encryption sever is also introduced. And a large number of computations are outsourced to the encryption server and decryption server, which reduces the computing overhead of the client. In addition, the proposed scheme uses a real-time revocation method to achieve attribute revocation and delegates most of the update tasks to the cloud, which also reduces the calculation overhead of the user side. The performance evaluations show the scheme is feasible and more efficient than the available ones.
ISSN:2169-3536