OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM

Stock trading is one of the businesses that has been done worldwide. In order to gain the maximum profit, accurate analysis is needed, so a trader can decide to buy and sell stock at the perfect time and price. Conventionally, two analyses are employed, namely fundamental and technical. Technical a...

Full description

Bibliographic Details
Main Author: Ignatius Wiseto Prasetyo Agung
Format: Article
Language:English
Published: LPPM ISB Atma Luhur 2021-07-01
Series:Jurnal Sisfokom
Subjects:
Online Access:http://jurnal.atmaluhur.ac.id/index.php/sisfokom/article/view/1166
id doaj-bde26f3444004b458651f496a8a8cd03
record_format Article
spelling doaj-bde26f3444004b458651f496a8a8cd032021-09-16T02:37:05ZengLPPM ISB Atma LuhurJurnal Sisfokom2301-79882581-05882021-07-0110221121610.32736/sisfokom.v10i2.1166OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAMIgnatius Wiseto Prasetyo Agung0Universitas Adhirajasa Reswara SanjayaStock trading is one of the businesses that has been done worldwide. In order to gain the maximum profit, accurate analysis is needed, so a trader can decide to buy and sell stock at the perfect time and price. Conventionally, two analyses are employed, namely fundamental and technical. Technical analysis is obtained based on historical data that is processed mathematically. Along with technology development, stock price analysis and prediction can be performed with the help of computational algorithms, such as machine learning. In this research, Artificial Neural Network simulations to produce accurate stock price predictions were carried out. Experiments are performed by using various input parameters, such as moving average filters, in order to produce the best accuracy. Simulations are completed with stock index datasets that represent three continents, i.e. NYA (America, USA), GDAXI (Europe, Germany), and JKSE (Asia, Indonesia). This work proposes a new method, which is the utilization of input parameters combinations of C, O, L, H, MA-5 of C, MA-5 of O, and the average of O & C prices. Furthermore, this proposed scheme is also compared to previous work done by Khorram et al, where this new work shows more accurate results.http://jurnal.atmaluhur.ac.id/index.php/sisfokom/article/view/1166artificial neural networkstock price predictionmoving average
collection DOAJ
language English
format Article
sources DOAJ
author Ignatius Wiseto Prasetyo Agung
spellingShingle Ignatius Wiseto Prasetyo Agung
OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
Jurnal Sisfokom
artificial neural network
stock price prediction
moving average
author_facet Ignatius Wiseto Prasetyo Agung
author_sort Ignatius Wiseto Prasetyo Agung
title OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
title_short OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
title_full OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
title_fullStr OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
title_full_unstemmed OPTIMASI PARAMETER INPUT PADA ARTIFICIAL NEURAL NETWORK UNTUK MENINGKATKAN AKURASI PREDIKSI INDEKS HARGA SAHAM
title_sort optimasi parameter input pada artificial neural network untuk meningkatkan akurasi prediksi indeks harga saham
publisher LPPM ISB Atma Luhur
series Jurnal Sisfokom
issn 2301-7988
2581-0588
publishDate 2021-07-01
description Stock trading is one of the businesses that has been done worldwide. In order to gain the maximum profit, accurate analysis is needed, so a trader can decide to buy and sell stock at the perfect time and price. Conventionally, two analyses are employed, namely fundamental and technical. Technical analysis is obtained based on historical data that is processed mathematically. Along with technology development, stock price analysis and prediction can be performed with the help of computational algorithms, such as machine learning. In this research, Artificial Neural Network simulations to produce accurate stock price predictions were carried out. Experiments are performed by using various input parameters, such as moving average filters, in order to produce the best accuracy. Simulations are completed with stock index datasets that represent three continents, i.e. NYA (America, USA), GDAXI (Europe, Germany), and JKSE (Asia, Indonesia). This work proposes a new method, which is the utilization of input parameters combinations of C, O, L, H, MA-5 of C, MA-5 of O, and the average of O & C prices. Furthermore, this proposed scheme is also compared to previous work done by Khorram et al, where this new work shows more accurate results.
topic artificial neural network
stock price prediction
moving average
url http://jurnal.atmaluhur.ac.id/index.php/sisfokom/article/view/1166
work_keys_str_mv AT ignatiuswisetoprasetyoagung optimasiparameterinputpadaartificialneuralnetworkuntukmeningkatkanakurasiprediksiindekshargasaham
_version_ 1717378506800758784