Hyperconvergences
The hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2003-10-01
|
Series: | Applied General Topology |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/2041 |
id |
doaj-bdd644a2e27b402bb0243df9efdec5ef |
---|---|
record_format |
Article |
spelling |
doaj-bdd644a2e27b402bb0243df9efdec5ef2020-11-24T22:57:00ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472003-10-014239141910.4995/agt.2003.20411658HyperconvergencesSzymon Dolecki0Frédéric Mynard1Université de BourgogneUniversity of MississippiThe hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence.http://polipapers.upv.es/index.php/AGT/article/view/2041 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Szymon Dolecki Frédéric Mynard |
spellingShingle |
Szymon Dolecki Frédéric Mynard Hyperconvergences Applied General Topology |
author_facet |
Szymon Dolecki Frédéric Mynard |
author_sort |
Szymon Dolecki |
title |
Hyperconvergences |
title_short |
Hyperconvergences |
title_full |
Hyperconvergences |
title_fullStr |
Hyperconvergences |
title_full_unstemmed |
Hyperconvergences |
title_sort |
hyperconvergences |
publisher |
Universitat Politècnica de València |
series |
Applied General Topology |
issn |
1576-9402 1989-4147 |
publishDate |
2003-10-01 |
description |
The hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence. |
url |
http://polipapers.upv.es/index.php/AGT/article/view/2041 |
work_keys_str_mv |
AT szymondolecki hyperconvergences AT fredericmynard hyperconvergences |
_version_ |
1725652589014417408 |