Hyperconvergences

The hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence.

Bibliographic Details
Main Authors: Szymon Dolecki, Frédéric Mynard
Format: Article
Language:English
Published: Universitat Politècnica de València 2003-10-01
Series:Applied General Topology
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/2041
id doaj-bdd644a2e27b402bb0243df9efdec5ef
record_format Article
spelling doaj-bdd644a2e27b402bb0243df9efdec5ef2020-11-24T22:57:00ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472003-10-014239141910.4995/agt.2003.20411658HyperconvergencesSzymon Dolecki0Frédéric Mynard1Université de BourgogneUniversity of MississippiThe hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence.http://polipapers.upv.es/index.php/AGT/article/view/2041
collection DOAJ
language English
format Article
sources DOAJ
author Szymon Dolecki
Frédéric Mynard
spellingShingle Szymon Dolecki
Frédéric Mynard
Hyperconvergences
Applied General Topology
author_facet Szymon Dolecki
Frédéric Mynard
author_sort Szymon Dolecki
title Hyperconvergences
title_short Hyperconvergences
title_full Hyperconvergences
title_fullStr Hyperconvergences
title_full_unstemmed Hyperconvergences
title_sort hyperconvergences
publisher Universitat Politècnica de València
series Applied General Topology
issn 1576-9402
1989-4147
publishDate 2003-10-01
description The hyperconvergence (upper Kuratowski convergence) is the coarsest convergence on the set of closed subsets of a convergence space that makes the canonical evaluation continuous. Sundry reective and coreective properties of hyperconvergences are characterized in terms of the underlying convergence.
url http://polipapers.upv.es/index.php/AGT/article/view/2041
work_keys_str_mv AT szymondolecki hyperconvergences
AT fredericmynard hyperconvergences
_version_ 1725652589014417408