Summary: | In the last twenty years, several rainfall-induced landslides occurred in areas surrounding Mount Vesuvius (Campania, Italy). Landslides usually involve the shallow pyroclastic soil layers (2-3 m thick) covering the steep slopes of the Lattari Mountains. The cultivation of trees for fruit production on the pyroclastic cover is a common practice by local farmers. Woody vegetation contributes to slope stability through the mechanical reinforcement of soil by roots. We investigated the use of Sweet chestnut (Castanea sativa Mill.) trees as a low-carbon landslide mitigation measure to be applied in large areas where conventional geotechnical engineering solutions would be costly and extremely invasive, in order to respond to the demand in energy and environmental geotechnics for eco-friendly approaches. The root distribution of C. sativa in terms of root volume ratio was determined from soil cores. The mechanical reinforcement of soil by tree roots was quantified based on root-soil interaction models. Slope stability was analysed by means of limit equilibrium analyses performed on an infinite slope. The safety factor calculated for a cultivated slope was higher than for a fallow slope due to the mechanical reinforcement provided by roots. Therefore, the cultivation of C. sativa is a useful mitigation measure against shallow landslides.
|