Short communication: Estimation of yield stress/viscosity of molten octol
Explosive HMX particles are similar in morphology and chemistry to RDX particles, the main constituent of Composition B-3 (Comp B-3). This suggests molten HMX-TNT formulations may show Bingham plasticity, much like recent studies have shown for Comp B-3. Here a Bingham plastic viscosity model, inclu...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2018-05-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5027397 |
Summary: | Explosive HMX particles are similar in morphology and chemistry to RDX particles, the main constituent of Composition B-3 (Comp B-3). This suggests molten HMX-TNT formulations may show Bingham plasticity, much like recent studies have shown for Comp B-3. Here a Bingham plastic viscosity model, including yield stress and shear thinning, is presented for octol (70/30wt% HMX/TNT) as a function of HMX particle volume fraction. The effect of HMX dissolution into molten TNT is included in this analysis. |
---|---|
ISSN: | 2158-3226 |