Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation

<p>Landslide displacement prediction has great practical engineering significance to landslide stability evaluation and early warning. The evolution of landslide is a complex dynamic process, and applying a classical prediction method will result in significant error. The data assimilation...

Full description

Bibliographic Details
Main Authors: J. Wang, G. Nie, S. Gao, C. Xue
Format: Article
Language:English
Published: Copernicus Publications 2019-07-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://www.nat-hazards-earth-syst-sci.net/19/1387/2019/nhess-19-1387-2019.pdf
id doaj-bdc22ed47cfa4deabe3f92e422ffbb7c
record_format Article
spelling doaj-bdc22ed47cfa4deabe3f92e422ffbb7c2020-11-25T00:17:27ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812019-07-01191387139810.5194/nhess-19-1387-2019Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilationJ. Wang0G. Nie1G. Nie2S. Gao3C. Xue4GNSS Research Center, Wuhan University, Wuhan, 430079, ChinaGNSS Research Center, Wuhan University, Wuhan, 430079, ChinaCollaborative Innovation Center for Geospatial Information Technology, Wuhan, 430079, ChinaChinese Antarctic Center of Surveying and Mapping, Wuhan, 430079, ChinaGNSS Research Center, Wuhan University, Wuhan, 430079, China<p>Landslide displacement prediction has great practical engineering significance to landslide stability evaluation and early warning. The evolution of landslide is a complex dynamic process, and applying a classical prediction method will result in significant error. The data assimilation method offers a new way to merge multisource data with the model. However, data assimilation is still deficient in the ability to meet the demand of dynamic landslide systems. In this paper, simultaneous state and parameter estimation (SSPE) using particle-filter-based data assimilation is applied to predict displacement of the landslide. A landslide SSPE assimilation strategy can make use of time-series displacements and hydrological information for the joint estimation of landslide displacement and model parameters, which can improve the performance considerably. We select Xishan Village, Sichuan Province, China, as the experiment site to test the SSPE assimilation strategy. Based on the comparison of actual monitoring data with prediction values, results strongly suggest the effectiveness and feasibility of the SSPE assimilation strategy in short-term landslide displacement estimation.</p>https://www.nat-hazards-earth-syst-sci.net/19/1387/2019/nhess-19-1387-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Wang
G. Nie
G. Nie
S. Gao
C. Xue
spellingShingle J. Wang
G. Nie
G. Nie
S. Gao
C. Xue
Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
Natural Hazards and Earth System Sciences
author_facet J. Wang
G. Nie
G. Nie
S. Gao
C. Xue
author_sort J. Wang
title Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
title_short Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
title_full Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
title_fullStr Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
title_full_unstemmed Simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
title_sort simultaneous state–parameter estimation of rainfall-induced landslide displacement using data assimilation
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2019-07-01
description <p>Landslide displacement prediction has great practical engineering significance to landslide stability evaluation and early warning. The evolution of landslide is a complex dynamic process, and applying a classical prediction method will result in significant error. The data assimilation method offers a new way to merge multisource data with the model. However, data assimilation is still deficient in the ability to meet the demand of dynamic landslide systems. In this paper, simultaneous state and parameter estimation (SSPE) using particle-filter-based data assimilation is applied to predict displacement of the landslide. A landslide SSPE assimilation strategy can make use of time-series displacements and hydrological information for the joint estimation of landslide displacement and model parameters, which can improve the performance considerably. We select Xishan Village, Sichuan Province, China, as the experiment site to test the SSPE assimilation strategy. Based on the comparison of actual monitoring data with prediction values, results strongly suggest the effectiveness and feasibility of the SSPE assimilation strategy in short-term landslide displacement estimation.</p>
url https://www.nat-hazards-earth-syst-sci.net/19/1387/2019/nhess-19-1387-2019.pdf
work_keys_str_mv AT jwang simultaneousstateparameterestimationofrainfallinducedlandslidedisplacementusingdataassimilation
AT gnie simultaneousstateparameterestimationofrainfallinducedlandslidedisplacementusingdataassimilation
AT gnie simultaneousstateparameterestimationofrainfallinducedlandslidedisplacementusingdataassimilation
AT sgao simultaneousstateparameterestimationofrainfallinducedlandslidedisplacementusingdataassimilation
AT cxue simultaneousstateparameterestimationofrainfallinducedlandslidedisplacementusingdataassimilation
_version_ 1725379724983664640