A few strong connections: optimizing information retention in neuronal avalanches
<p>Abstract</p> <p>Background</p> <p>How living neural networks retain information is still incompletely understood. Two prominent ideas on this topic have developed in parallel, but have remained somewhat unconnected. The first of these, the "synaptic hypothesis,&...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-01-01
|
Series: | BMC Neuroscience |
Online Access: | http://www.biomedcentral.com/1471-2202/11/3 |
id |
doaj-bda708e31b88420e9d81485193b8dd2d |
---|---|
record_format |
Article |
spelling |
doaj-bda708e31b88420e9d81485193b8dd2d2020-11-25T00:26:18ZengBMCBMC Neuroscience1471-22022010-01-01111310.1186/1471-2202-11-3A few strong connections: optimizing information retention in neuronal avalanchesTang AonanHobbs Jon PChen WeiBeggs John M<p>Abstract</p> <p>Background</p> <p>How living neural networks retain information is still incompletely understood. Two prominent ideas on this topic have developed in parallel, but have remained somewhat unconnected. The first of these, the "synaptic hypothesis," holds that information can be retained in synaptic connection strengths, or weights, between neurons. Recent work inspired by statistical mechanics has suggested that networks will retain the most information when their weights are distributed in a skewed manner, with many weak weights and only a few strong ones. The second of these ideas is that information can be represented by stable activity patterns. Multineuron recordings have shown that sequences of neural activity distributed over many neurons are repeated above chance levels when animals perform well-learned tasks. Although these two ideas are compelling, no one to our knowledge has yet linked the predicted optimum distribution of weights to stable activity patterns actually observed in living neural networks.</p> <p>Results</p> <p>Here, we explore this link by comparing stable activity patterns from cortical slice networks recorded with multielectrode arrays to stable patterns produced by a model with a tunable weight distribution. This model was previously shown to capture central features of the dynamics in these slice networks, including neuronal avalanche cascades. We find that when the model weight distribution is appropriately skewed, it correctly matches the distribution of repeating patterns observed in the data. In addition, this same distribution of weights maximizes the capacity of the network model to retain stable activity patterns. Thus, the distribution that best fits the data is also the distribution that maximizes the number of stable patterns.</p> <p>Conclusions</p> <p>We conclude that local cortical networks are very likely to use a highly skewed weight distribution to optimize information retention, as predicted by theory. Fixed distributions impose constraints on learning, however. The network must have mechanisms for preserving the overall weight distribution while allowing individual connection strengths to change with learning.</p> http://www.biomedcentral.com/1471-2202/11/3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tang Aonan Hobbs Jon P Chen Wei Beggs John M |
spellingShingle |
Tang Aonan Hobbs Jon P Chen Wei Beggs John M A few strong connections: optimizing information retention in neuronal avalanches BMC Neuroscience |
author_facet |
Tang Aonan Hobbs Jon P Chen Wei Beggs John M |
author_sort |
Tang Aonan |
title |
A few strong connections: optimizing information retention in neuronal avalanches |
title_short |
A few strong connections: optimizing information retention in neuronal avalanches |
title_full |
A few strong connections: optimizing information retention in neuronal avalanches |
title_fullStr |
A few strong connections: optimizing information retention in neuronal avalanches |
title_full_unstemmed |
A few strong connections: optimizing information retention in neuronal avalanches |
title_sort |
few strong connections: optimizing information retention in neuronal avalanches |
publisher |
BMC |
series |
BMC Neuroscience |
issn |
1471-2202 |
publishDate |
2010-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>How living neural networks retain information is still incompletely understood. Two prominent ideas on this topic have developed in parallel, but have remained somewhat unconnected. The first of these, the "synaptic hypothesis," holds that information can be retained in synaptic connection strengths, or weights, between neurons. Recent work inspired by statistical mechanics has suggested that networks will retain the most information when their weights are distributed in a skewed manner, with many weak weights and only a few strong ones. The second of these ideas is that information can be represented by stable activity patterns. Multineuron recordings have shown that sequences of neural activity distributed over many neurons are repeated above chance levels when animals perform well-learned tasks. Although these two ideas are compelling, no one to our knowledge has yet linked the predicted optimum distribution of weights to stable activity patterns actually observed in living neural networks.</p> <p>Results</p> <p>Here, we explore this link by comparing stable activity patterns from cortical slice networks recorded with multielectrode arrays to stable patterns produced by a model with a tunable weight distribution. This model was previously shown to capture central features of the dynamics in these slice networks, including neuronal avalanche cascades. We find that when the model weight distribution is appropriately skewed, it correctly matches the distribution of repeating patterns observed in the data. In addition, this same distribution of weights maximizes the capacity of the network model to retain stable activity patterns. Thus, the distribution that best fits the data is also the distribution that maximizes the number of stable patterns.</p> <p>Conclusions</p> <p>We conclude that local cortical networks are very likely to use a highly skewed weight distribution to optimize information retention, as predicted by theory. Fixed distributions impose constraints on learning, however. The network must have mechanisms for preserving the overall weight distribution while allowing individual connection strengths to change with learning.</p> |
url |
http://www.biomedcentral.com/1471-2202/11/3 |
work_keys_str_mv |
AT tangaonan afewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT hobbsjonp afewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT chenwei afewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT beggsjohnm afewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT tangaonan fewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT hobbsjonp fewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT chenwei fewstrongconnectionsoptimizinginformationretentioninneuronalavalanches AT beggsjohnm fewstrongconnectionsoptimizinginformationretentioninneuronalavalanches |
_version_ |
1725344915434504192 |