Imparting hydrophobic functionalities to copper surface using laser ablation and water emulsion of surfactants

Wettability is one of the main characteristics of a surface and reflects the ability of a liquid to flow over a solid surface. Using hydrophobic functional surfaces in evaporator and condenser of heating plants to intensify heat exchange processes will increase efficiency and, consequently, reduce t...

Full description

Bibliographic Details
Main Authors: Grigoriev Sergey, Trushin Evgeniy, Likhaeva Alena, Volkov Alexander, Dasaev Marat
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/65/e3sconf_esr2021_06004.pdf
Description
Summary:Wettability is one of the main characteristics of a surface and reflects the ability of a liquid to flow over a solid surface. Using hydrophobic functional surfaces in evaporator and condenser of heating plants to intensify heat exchange processes will increase efficiency and, consequently, reduce the metal consumption and weight-size parameters of this equipment. This will result in reduced energy consumption and lower production and operating costs. This paper presents an analysis of methods for creating hydrophobic surfaces. The fabrication of hydrophobic copper surface of experimental samples by creating multimodal relief in form of 50 µm grid by laser ablation process and subsequent reduction of surface energy of material using water emulsion of octadecylamine is grounded and described. The fluence was varied from 5 to 900 J/cm2 when modifying the surface using laser station. The dependence of the effect of laser fluence on water contact angle value is presented. Following the study, the optimum laser irradiation parameters for the surface of experimental samples were determined, at which the maximum value of water contact angle of 146.61° and the minimum value of roll-off angle of 13.5° were obtained.
ISSN:2267-1242