Computational consistency of the material models and boundary conditions for finite element analyses on cantilever beams

The objective of this research was to investigate the effects of material models, element types, and boundary conditions on the consistency of finite element analysis. Two cantilever beams were used; one made of stainless steel SUS301 3/4H and the other made of polymer polyoxymethylene. The load–def...

Full description

Bibliographic Details
Main Authors: Wei-chen Lee, Chen-hao Zhang
Format: Article
Language:English
Published: SAGE Publishing 2018-06-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/1687814018780029
Description
Summary:The objective of this research was to investigate the effects of material models, element types, and boundary conditions on the consistency of finite element analysis. Two cantilever beams were used; one made of stainless steel SUS301 3/4H and the other made of polymer polyoxymethylene. The load–deflection curves of the two cantilever beams obtained by experiments were compared to those obtained by finite element analysis, where the material models—including bilinear, trilinear, and multi-linear—were used. Four element types—beam, plane stress, shell, and solid—were also employed with the material models to obtain the simulated load–deflection curves of the cantilever beams. It was found that bilinear material models had the stiffest behavior due to their overestimated yield strength. In addition, by applying a finite displacement to simulate the grip of the cantilever beams, the discrepancy between the simulated permanent set and the experimental set could be reduced from 80% to 5%. To sum up, both the selection of the material model and the setup of the boundary conditions are critical for obtaining good agreement between the finite element analysis results and the experimental data.
ISSN:1687-8140