Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling

The modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy t...

Full description

Bibliographic Details
Main Authors: Israel Elias, José de Jesús Rubio, Dany Ivan Martinez, Tomas Miguel Vargas, Victor Garcia, Dante Mujica-Vargas, Jesus Alberto Meda-Campaña, Jaime Pacheco, Guadalupe Juliana Gutierrez, Alejandro Zacarias
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/12/4239
id doaj-bd9759edc55c46febcc4dfcdf38c67b3
record_format Article
spelling doaj-bd9759edc55c46febcc4dfcdf38c67b32020-11-25T02:24:21ZengMDPI AGApplied Sciences2076-34172020-06-01104239423910.3390/app10124239Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption ModelingIsrael Elias0José de Jesús Rubio1Dany Ivan Martinez2Tomas Miguel Vargas3Victor Garcia4Dante Mujica-Vargas5Jesus Alberto Meda-Campaña6Jaime Pacheco7Guadalupe Juliana Gutierrez8Alejandro Zacarias9Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoDepartment of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca-Morelos 62490, MexicoSección de Estudios de Posgrado e Investigación, ESIME Zacatenco, Instituto Politécnico Nacional, Av. IPN S/N, Col. Lindavista, Ciudad de México 07738, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoThe modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy task. In this article, a genetic algorithm is used to seek of the best hyper-parameters in the modified backpropagation for the parameters updating of a RBM network, and this RBM network is used for more precise electricity consumption modeling in a city. The suggested approach is called genetic algorithm with a RBM network. Additionally, since the genetic algorithm with a RBM network starts from the modified backpropagation, we compare both approaches for the electricity consumption modeling in a city.https://www.mdpi.com/2076-3417/10/12/4239genetic algorithmbackpropagationRBM networkelectricity consumption
collection DOAJ
language English
format Article
sources DOAJ
author Israel Elias
José de Jesús Rubio
Dany Ivan Martinez
Tomas Miguel Vargas
Victor Garcia
Dante Mujica-Vargas
Jesus Alberto Meda-Campaña
Jaime Pacheco
Guadalupe Juliana Gutierrez
Alejandro Zacarias
spellingShingle Israel Elias
José de Jesús Rubio
Dany Ivan Martinez
Tomas Miguel Vargas
Victor Garcia
Dante Mujica-Vargas
Jesus Alberto Meda-Campaña
Jaime Pacheco
Guadalupe Juliana Gutierrez
Alejandro Zacarias
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
Applied Sciences
genetic algorithm
backpropagation
RBM network
electricity consumption
author_facet Israel Elias
José de Jesús Rubio
Dany Ivan Martinez
Tomas Miguel Vargas
Victor Garcia
Dante Mujica-Vargas
Jesus Alberto Meda-Campaña
Jaime Pacheco
Guadalupe Juliana Gutierrez
Alejandro Zacarias
author_sort Israel Elias
title Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
title_short Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
title_full Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
title_fullStr Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
title_full_unstemmed Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
title_sort genetic algorithm with radial basis mapping network for the electricity consumption modeling
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2020-06-01
description The modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy task. In this article, a genetic algorithm is used to seek of the best hyper-parameters in the modified backpropagation for the parameters updating of a RBM network, and this RBM network is used for more precise electricity consumption modeling in a city. The suggested approach is called genetic algorithm with a RBM network. Additionally, since the genetic algorithm with a RBM network starts from the modified backpropagation, we compare both approaches for the electricity consumption modeling in a city.
topic genetic algorithm
backpropagation
RBM network
electricity consumption
url https://www.mdpi.com/2076-3417/10/12/4239
work_keys_str_mv AT israelelias geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT josedejesusrubio geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT danyivanmartinez geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT tomasmiguelvargas geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT victorgarcia geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT dantemujicavargas geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT jesusalbertomedacampana geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT jaimepacheco geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT guadalupejulianagutierrez geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
AT alejandrozacarias geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling
_version_ 1724856134033997824