Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling
The modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy t...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/12/4239 |
id |
doaj-bd9759edc55c46febcc4dfcdf38c67b3 |
---|---|
record_format |
Article |
spelling |
doaj-bd9759edc55c46febcc4dfcdf38c67b32020-11-25T02:24:21ZengMDPI AGApplied Sciences2076-34172020-06-01104239423910.3390/app10124239Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption ModelingIsrael Elias0José de Jesús Rubio1Dany Ivan Martinez2Tomas Miguel Vargas3Victor Garcia4Dante Mujica-Vargas5Jesus Alberto Meda-Campaña6Jaime Pacheco7Guadalupe Juliana Gutierrez8Alejandro Zacarias9Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoDepartment of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca-Morelos 62490, MexicoSección de Estudios de Posgrado e Investigación, ESIME Zacatenco, Instituto Politécnico Nacional, Av. IPN S/N, Col. Lindavista, Ciudad de México 07738, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, Ciudad de México 02250, MexicoThe modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy task. In this article, a genetic algorithm is used to seek of the best hyper-parameters in the modified backpropagation for the parameters updating of a RBM network, and this RBM network is used for more precise electricity consumption modeling in a city. The suggested approach is called genetic algorithm with a RBM network. Additionally, since the genetic algorithm with a RBM network starts from the modified backpropagation, we compare both approaches for the electricity consumption modeling in a city.https://www.mdpi.com/2076-3417/10/12/4239genetic algorithmbackpropagationRBM networkelectricity consumption |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Israel Elias José de Jesús Rubio Dany Ivan Martinez Tomas Miguel Vargas Victor Garcia Dante Mujica-Vargas Jesus Alberto Meda-Campaña Jaime Pacheco Guadalupe Juliana Gutierrez Alejandro Zacarias |
spellingShingle |
Israel Elias José de Jesús Rubio Dany Ivan Martinez Tomas Miguel Vargas Victor Garcia Dante Mujica-Vargas Jesus Alberto Meda-Campaña Jaime Pacheco Guadalupe Juliana Gutierrez Alejandro Zacarias Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling Applied Sciences genetic algorithm backpropagation RBM network electricity consumption |
author_facet |
Israel Elias José de Jesús Rubio Dany Ivan Martinez Tomas Miguel Vargas Victor Garcia Dante Mujica-Vargas Jesus Alberto Meda-Campaña Jaime Pacheco Guadalupe Juliana Gutierrez Alejandro Zacarias |
author_sort |
Israel Elias |
title |
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling |
title_short |
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling |
title_full |
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling |
title_fullStr |
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling |
title_full_unstemmed |
Genetic Algorithm with Radial Basis Mapping Network for the Electricity Consumption Modeling |
title_sort |
genetic algorithm with radial basis mapping network for the electricity consumption modeling |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2020-06-01 |
description |
The modified backpropagation algorithm based on the backpropagation with momentum is used for the parameters updating of a radial basis mapping (RBM) network, where it requires of the best hyper-parameters for more precise modeling. Seeking of the best hyper-parameters in a model it is not an easy task. In this article, a genetic algorithm is used to seek of the best hyper-parameters in the modified backpropagation for the parameters updating of a RBM network, and this RBM network is used for more precise electricity consumption modeling in a city. The suggested approach is called genetic algorithm with a RBM network. Additionally, since the genetic algorithm with a RBM network starts from the modified backpropagation, we compare both approaches for the electricity consumption modeling in a city. |
topic |
genetic algorithm backpropagation RBM network electricity consumption |
url |
https://www.mdpi.com/2076-3417/10/12/4239 |
work_keys_str_mv |
AT israelelias geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT josedejesusrubio geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT danyivanmartinez geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT tomasmiguelvargas geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT victorgarcia geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT dantemujicavargas geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT jesusalbertomedacampana geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT jaimepacheco geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT guadalupejulianagutierrez geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling AT alejandrozacarias geneticalgorithmwithradialbasismappingnetworkfortheelectricityconsumptionmodeling |
_version_ |
1724856134033997824 |