Normal Spastin Gene Dosage Is Specifically Required for Axon Regeneration

Axon regeneration allows neurons to repair circuits after trauma; however, most of the molecular players in this process remain to be identified. Given that microtubule rearrangements have been observed in injured neurons, we tested whether microtubule-severing proteins might play a role in axon re...

Full description

Bibliographic Details
Main Authors: Michelle C. Stone, Kavitha Rao, Kyle W. Gheres, Seahee Kim, Juan Tao, Caroline La Rochelle, Christin T. Folker, Nina T. Sherwood, Melissa M. Rolls
Format: Article
Language:English
Published: Elsevier 2012-11-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124712003397
Description
Summary:Axon regeneration allows neurons to repair circuits after trauma; however, most of the molecular players in this process remain to be identified. Given that microtubule rearrangements have been observed in injured neurons, we tested whether microtubule-severing proteins might play a role in axon regeneration. We found that axon regeneration is extremely sensitive to levels of the microtubule-severing protein spastin. Although microtubule behavior in uninjured neurons was not perturbed in animals heterozygous for a spastin null allele, axon regeneration was severely disrupted in this background. Two types of axon regeneration—regeneration of an axon from a dendrite after proximal axotomy and regeneration of an axon from the stump after distal axotomy—were defective in Drosophila with one mutant copy of the spastin gene. Other types of axon and dendrite outgrowth, including regrowth of dendrites after pruning, were normal in heterozygotes. We conclude that regenerative axon growth is uniquely sensitive to spastin gene dosage.
ISSN:2211-1247