SIF and CMOD for three-point bending beams with arbitrary span-to-width ratios by using analytical weight function method
Stress intensity factors (SIF) and crack mouth opening displacements (CMOD) for three-point bending beams with arbitrary span-to-width ratios (S/W) were calculated by using the Wu-Carlsson analytical weight function for edge-cracked finite-width plate and the analytical solution of un-cracked stress...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Journal of Aeronautical Materials
2020-06-01
|
Series: | Journal of Aeronautical Materials |
Subjects: | |
Online Access: | http://jam.biam.ac.cn/article/doi/10.11868/j.issn.1005-5053.2020.000052 |
Summary: | Stress intensity factors (SIF) and crack mouth opening displacements (CMOD) for three-point bending beams with arbitrary span-to-width ratios (S/W) were calculated by using the Wu-Carlsson analytical weight function for edge-cracked finite-width plate and the analytical solution of un-cracked stress by Filon. Based on the analytical weight function and tabulated SIF and CMOD data for power-law crack-line stresses, SIF and CMOD for general polynomial crack face loadings could be rapidly determined by simple arithmetic. The results obtained for several span-to-width ratios determined by using fundamentally different methods are in excellent agreement with those in literature. A brief discussion is made for calculating cohesive fracture toughness by analytical weight function method. The present study provides a high efficient and accurate method for fracture mechanics analysis of the three-point bending beam with arbitrary span-to-width ratio. |
---|---|
ISSN: | 1005-5053 1005-5053 |