Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments

In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically b...

Full description

Bibliographic Details
Main Authors: E. S. Garcia, C. L. Tague
Format: Article
Language:English
Published: Copernicus Publications 2015-12-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/19/4845/2015/hess-19-4845-2015.pdf
id doaj-bd509ce92464490bb8edf6332f45f4dd
record_format Article
spelling doaj-bd509ce92464490bb8edf6332f45f4dd2020-11-25T01:05:13ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382015-12-0119124845485810.5194/hess-19-4845-2015Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchmentsE. S. Garcia0C. L. Tague1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USABren School of Environmental Science and Management, University of California, Santa Barbara, CA, USAIn the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how plant accessible water storage capacity (AWC) and rates of drainage influence model estimates of ET–climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second-order control. Low AWC, however, increases the sensitivity of annual ET to these climate drivers by 3 to 5 times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver–ET relationships are most sensitive to subsurface storage (AWC) and drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed-scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in storage and drainage properties are likely to lead to substantial within-watershed plot-scale differences in forest water use and drought stress.http://www.hydrol-earth-syst-sci.net/19/4845/2015/hess-19-4845-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author E. S. Garcia
C. L. Tague
spellingShingle E. S. Garcia
C. L. Tague
Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
Hydrology and Earth System Sciences
author_facet E. S. Garcia
C. L. Tague
author_sort E. S. Garcia
title Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
title_short Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
title_full Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
title_fullStr Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
title_full_unstemmed Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments
title_sort subsurface storage capacity influences climate–evapotranspiration interactions in three western united states catchments
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2015-12-01
description In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how plant accessible water storage capacity (AWC) and rates of drainage influence model estimates of ET–climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second-order control. Low AWC, however, increases the sensitivity of annual ET to these climate drivers by 3 to 5 times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver–ET relationships are most sensitive to subsurface storage (AWC) and drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed-scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in storage and drainage properties are likely to lead to substantial within-watershed plot-scale differences in forest water use and drought stress.
url http://www.hydrol-earth-syst-sci.net/19/4845/2015/hess-19-4845-2015.pdf
work_keys_str_mv AT esgarcia subsurfacestoragecapacityinfluencesclimateevapotranspirationinteractionsinthreewesternunitedstatescatchments
AT cltague subsurfacestoragecapacityinfluencesclimateevapotranspirationinteractionsinthreewesternunitedstatescatchments
_version_ 1725195610415431680