Optimizing Electroactive Organisms: The Effect of Orthologous Proteins

Extracellular electron transfer pathways allow bacteria to transfer electrons from the cell metabolism to extracellular substrates, such as metal oxides in natural environments and electrodes in microbial electrochemical technologies (MET). Studies of electroactive microorganisms and mainly of Shewa...

Full description

Bibliographic Details
Main Authors: Bruno M. Fonseca, Luís Silva, Inês B. Trindade, Elin Moe, Pedro M. Matias, Ricardo O. Louro, Catarina M. Paquete
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-01-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fenrg.2019.00002/full
id doaj-bd3cc350d3ed4f4caccaebcdde9741eb
record_format Article
spelling doaj-bd3cc350d3ed4f4caccaebcdde9741eb2020-11-24T21:34:56ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2019-01-01710.3389/fenrg.2019.00002428370Optimizing Electroactive Organisms: The Effect of Orthologous ProteinsBruno M. Fonseca0Luís Silva1Inês B. Trindade2Elin Moe3Pedro M. Matias4Pedro M. Matias5Ricardo O. Louro6Catarina M. Paquete7Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Biologia Experimental e Tecnológica, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalInstituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, PortugalExtracellular electron transfer pathways allow bacteria to transfer electrons from the cell metabolism to extracellular substrates, such as metal oxides in natural environments and electrodes in microbial electrochemical technologies (MET). Studies of electroactive microorganisms and mainly of Shewanella oneidensis MR-1 have demonstrated that extracellular electron transfer pathways relies on several multiheme c-type cytochromes. The small tetraheme cytochrome c (STC) is highly conserved among Shewanella species and is one of the most abundant cytochromes in the periplasmic space. It transfers electrons from the cell metabolism delivered by the inner-membrane tetraheme cytochrome CymA, to the porin-cytochrome complex MtrCAB in the outer-membrane, to reduce solid electron acceptors outside the cell, or electrodes in the case of MET. In this work knock-out strains of STC of S. oneidensis MR-1, expressing STC from distinct Shewanella species were tested for their ability to perform extracellular electron transfer, allowing to explore the effect of protein mutations in living organisms. These studies, complemented by a biochemical evaluation of the electron transfer properties of the individual proteins, revealed a considerable plasticity in the molecular components involved in extracellular electron transfer. The results of this work are pioneering and of significant relevance for future rational design of cytochromes in order to enhance extracellular electron transfer and thus contribute to the practical implementation of MET.https://www.frontiersin.org/article/10.3389/fenrg.2019.00002/fullextracellular electron transferShewanellasmall tetraheme cytochromemicrobial fuel cellsmethyl orangeorthologous proteins
collection DOAJ
language English
format Article
sources DOAJ
author Bruno M. Fonseca
Luís Silva
Inês B. Trindade
Elin Moe
Pedro M. Matias
Pedro M. Matias
Ricardo O. Louro
Catarina M. Paquete
spellingShingle Bruno M. Fonseca
Luís Silva
Inês B. Trindade
Elin Moe
Pedro M. Matias
Pedro M. Matias
Ricardo O. Louro
Catarina M. Paquete
Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
Frontiers in Energy Research
extracellular electron transfer
Shewanella
small tetraheme cytochrome
microbial fuel cells
methyl orange
orthologous proteins
author_facet Bruno M. Fonseca
Luís Silva
Inês B. Trindade
Elin Moe
Pedro M. Matias
Pedro M. Matias
Ricardo O. Louro
Catarina M. Paquete
author_sort Bruno M. Fonseca
title Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
title_short Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
title_full Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
title_fullStr Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
title_full_unstemmed Optimizing Electroactive Organisms: The Effect of Orthologous Proteins
title_sort optimizing electroactive organisms: the effect of orthologous proteins
publisher Frontiers Media S.A.
series Frontiers in Energy Research
issn 2296-598X
publishDate 2019-01-01
description Extracellular electron transfer pathways allow bacteria to transfer electrons from the cell metabolism to extracellular substrates, such as metal oxides in natural environments and electrodes in microbial electrochemical technologies (MET). Studies of electroactive microorganisms and mainly of Shewanella oneidensis MR-1 have demonstrated that extracellular electron transfer pathways relies on several multiheme c-type cytochromes. The small tetraheme cytochrome c (STC) is highly conserved among Shewanella species and is one of the most abundant cytochromes in the periplasmic space. It transfers electrons from the cell metabolism delivered by the inner-membrane tetraheme cytochrome CymA, to the porin-cytochrome complex MtrCAB in the outer-membrane, to reduce solid electron acceptors outside the cell, or electrodes in the case of MET. In this work knock-out strains of STC of S. oneidensis MR-1, expressing STC from distinct Shewanella species were tested for their ability to perform extracellular electron transfer, allowing to explore the effect of protein mutations in living organisms. These studies, complemented by a biochemical evaluation of the electron transfer properties of the individual proteins, revealed a considerable plasticity in the molecular components involved in extracellular electron transfer. The results of this work are pioneering and of significant relevance for future rational design of cytochromes in order to enhance extracellular electron transfer and thus contribute to the practical implementation of MET.
topic extracellular electron transfer
Shewanella
small tetraheme cytochrome
microbial fuel cells
methyl orange
orthologous proteins
url https://www.frontiersin.org/article/10.3389/fenrg.2019.00002/full
work_keys_str_mv AT brunomfonseca optimizingelectroactiveorganismstheeffectoforthologousproteins
AT luissilva optimizingelectroactiveorganismstheeffectoforthologousproteins
AT inesbtrindade optimizingelectroactiveorganismstheeffectoforthologousproteins
AT elinmoe optimizingelectroactiveorganismstheeffectoforthologousproteins
AT pedrommatias optimizingelectroactiveorganismstheeffectoforthologousproteins
AT pedrommatias optimizingelectroactiveorganismstheeffectoforthologousproteins
AT ricardoolouro optimizingelectroactiveorganismstheeffectoforthologousproteins
AT catarinampaquete optimizingelectroactiveorganismstheeffectoforthologousproteins
_version_ 1725947291479572480