Energy and Environmental Comparison between a Concrete Wall with and without a Living Green Wall: A Case Study in Mexicali, Mexico

In cities with dry arid climate, air conditioning (AC) equipment is necessary for thermal comfort in indoor spaces. The use of this equipment generates an increase in electricity consumption and an increment in CO₂ emissions to the environment; thus, one way to mitigate these negative effects is the...

Full description

Bibliographic Details
Main Authors: Ángeles Campos-Osorio, Néstor Santillán-Soto, O. Rafael García-Cueto, Alejandro A. Lambert-Arista, Gonzalo Bojórquez-Morales
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/13/5265
Description
Summary:In cities with dry arid climate, air conditioning (AC) equipment is necessary for thermal comfort in indoor spaces. The use of this equipment generates an increase in electricity consumption and an increment in CO₂ emissions to the environment; thus, one way to mitigate these negative effects is the Living Green Wall (LGW). The objective of this research is to assess the decrease in thermal gain, energy benefits, and estimate the greenhouse gas (GHG) emissions that are not emitted by the use of the LGW. Measurements of heat flux, solar radiation, and temperatures were made on a concrete wall and another with an LGW in a west-facing building in the city of Mexicali, Mexico. The results indicate that it is possible to reduce 49% of the heat flow through the wall, which reduces the thermal load 102,212 Btu/h to the indoor space, implying the additional work of 8.53 tons of AC. This excess equals 985.6 kWh of electrical energy and generates a total of 697 kg of CO₂ emissions during the warm season. It is concluded that shading with an LWG becomes a very influential element to mitigate the heat fluxes towards the indoor spaces.
ISSN:2071-1050