A Heuristic Approach for Tracking Error and Energy Consumption Minimization in Solar Tracking Systems

This paper proposes a methodology for optimizing a class of robotic solar tracking systems with two degrees of freedom using a heuristic approach. The proposal allows a balance to be found between the energy consumption and tracking accuracy in the tracking system. The main purpose is the behavior m...

Full description

Bibliographic Details
Main Authors: Diego A. Flores-Hernandez, Sergio I. Palomino-Resendiz, Alberto Luviano-Juarez, Norma Lozada-Castillo, Octavio Gutierrez-Frias
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8694994/
Description
Summary:This paper proposes a methodology for optimizing a class of robotic solar tracking systems with two degrees of freedom using a heuristic approach. The proposal allows a balance to be found between the energy consumption and tracking accuracy in the tracking system. The main purpose is the behavior modification of the system through the combination of two manipulation strategies, one associated with the energy savings and the other with the tracking error. The heuristic approach was implemented in a solar tracking system with the end effector connected to a solar measurement device. Four energy-saving strategies and three tracking strategies were developed, simulated, and implemented in the system. The simulation results show that the resulting strategy combination (tracking error and energy saving approach) led to 31.55% energy savings compared to the reference values, with a tracking error of 0.06°. Moreover, the experimental assessment of the same combination led to 26.98% energy is being saved, with an azimuthal tracking error of 0.062° and elevation tracking error of 0.071°. The preceding values support the aim of the presented proposal to significantly reduce energy consumption while concurrently achieving a competitive tracking error.
ISSN:2169-3536