On the Lassak Conjecture for a Convex Body
In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axi...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2011-09-01
|
Series: | Modelirovanie i Analiz Informacionnyh Sistem |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/1059 |
id |
doaj-bd2dfb83499d4b43a4d225b38424805b |
---|---|
record_format |
Article |
spelling |
doaj-bd2dfb83499d4b43a4d225b38424805b2021-07-29T08:15:17ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172011-09-01183511800On the Lassak Conjecture for a Convex BodyM. V. Nevskii0Ярославский государственный университет им. П.Г. ДемидоваIn 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.https://www.mais-journal.ru/jour/article/view/1059convex bodywidthaxial diameterhomothetysimplexinterpolationprojection |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. V. Nevskii |
spellingShingle |
M. V. Nevskii On the Lassak Conjecture for a Convex Body Modelirovanie i Analiz Informacionnyh Sistem convex body width axial diameter homothety simplex interpolation projection |
author_facet |
M. V. Nevskii |
author_sort |
M. V. Nevskii |
title |
On the Lassak Conjecture for a Convex Body |
title_short |
On the Lassak Conjecture for a Convex Body |
title_full |
On the Lassak Conjecture for a Convex Body |
title_fullStr |
On the Lassak Conjecture for a Convex Body |
title_full_unstemmed |
On the Lassak Conjecture for a Convex Body |
title_sort |
on the lassak conjecture for a convex body |
publisher |
Yaroslavl State University |
series |
Modelirovanie i Analiz Informacionnyh Sistem |
issn |
1818-1015 2313-5417 |
publishDate |
2011-09-01 |
description |
In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$. |
topic |
convex body width axial diameter homothety simplex interpolation projection |
url |
https://www.mais-journal.ru/jour/article/view/1059 |
work_keys_str_mv |
AT mvnevskii onthelassakconjectureforaconvexbody |
_version_ |
1721256609263386624 |