On the Lassak Conjecture for a Convex Body

In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axi...

Full description

Bibliographic Details
Main Author: M. V. Nevskii
Format: Article
Language:English
Published: Yaroslavl State University 2011-09-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1059
id doaj-bd2dfb83499d4b43a4d225b38424805b
record_format Article
spelling doaj-bd2dfb83499d4b43a4d225b38424805b2021-07-29T08:15:17ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172011-09-01183511800On the Lassak Conjecture for a Convex BodyM. V. Nevskii0Ярославский государственный университет им. П.Г. ДемидоваIn 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.https://www.mais-journal.ru/jour/article/view/1059convex bodywidthaxial diameterhomothetysimplexinterpolationprojection
collection DOAJ
language English
format Article
sources DOAJ
author M. V. Nevskii
spellingShingle M. V. Nevskii
On the Lassak Conjecture for a Convex Body
Modelirovanie i Analiz Informacionnyh Sistem
convex body
width
axial diameter
homothety
simplex
interpolation
projection
author_facet M. V. Nevskii
author_sort M. V. Nevskii
title On the Lassak Conjecture for a Convex Body
title_short On the Lassak Conjecture for a Convex Body
title_full On the Lassak Conjecture for a Convex Body
title_fullStr On the Lassak Conjecture for a Convex Body
title_full_unstemmed On the Lassak Conjecture for a Convex Body
title_sort on the lassak conjecture for a convex body
publisher Yaroslavl State University
series Modelirovanie i Analiz Informacionnyh Sistem
issn 1818-1015
2313-5417
publishDate 2011-09-01
description In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.
topic convex body
width
axial diameter
homothety
simplex
interpolation
projection
url https://www.mais-journal.ru/jour/article/view/1059
work_keys_str_mv AT mvnevskii onthelassakconjectureforaconvexbody
_version_ 1721256609263386624