On the Lassak Conjecture for a Convex Body

In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axi...

Full description

Bibliographic Details
Main Author: M. V. Nevskii
Format: Article
Language:English
Published: Yaroslavl State University 2011-09-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1059
Description
Summary:In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.
ISSN:1818-1015
2313-5417