Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and Implications for the Developmental Patterns of Extinct, Early Tetrapods.

The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis p...

Full description

Bibliographic Details
Main Author: Jennifer C Olori
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4470922?pdf=render
Description
Summary:The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg.
ISSN:1932-6203