Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.

Members of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better...

Full description

Bibliographic Details
Main Authors: Melanie T Cushion, A George Smulian, Bradley E Slaven, Tom Sesterhenn, Jonathan Arnold, Chuck Staben, Aleksey Porollo, Rafal Adamczak, Jarek Meller
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2007-05-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC1855432?pdf=render
id doaj-bd1677ec4fad4ec2bd86a29cf6c28feb
record_format Article
spelling doaj-bd1677ec4fad4ec2bd86a29cf6c28feb2020-11-25T01:18:46ZengPublic Library of Science (PLoS)PLoS ONE1932-62032007-05-0125e42310.1371/journal.pone.0000423Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.Melanie T CushionA George SmulianBradley E SlavenTom SesterhennJonathan ArnoldChuck StabenAleksey PorolloRafal AdamczakJarek MellerMembers of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better understand the pathological process, about 4500 ESTS derived from sequencing of the poly(A) tail ends of P. carinii mRNAs during fulminate infection were annotated and functionally characterized as unassembled reads, and then clustered and reduced to a unigene set with 1042 members. Because of the presence of sequences from other microbial genomes and the rat host, the analysis and compression to a unigene set was necessarily an iterative process. BLASTx analysis of the unassembled reads (UR) vs. the Uni-Prot and TREMBL databases revealed 56% had similarities to existing polypeptides at E values of<or=10(-6), with the remainder lacking any significant homology. The most abundant transcripts in the UR were associated with stress responses, energy production, transcription and translation. Most (70%) of the UR had similarities to proteins from filamentous fungi (e.g., Aspergillus, Neurospora) and existing P. carinii gene products. In contrast, similarities to proteins of the yeast-like fungi, Schizosaccharomyces pombe and Saccharomyces cerevisiae, predominated in the unigene set. Gene Ontology analysis using BLAST2GO revealed P. carinii dedicated most of its transcripts to cellular and physiological processes ( approximately 80%), molecular binding and catalytic activities (approximately 70%), and were primarily derived from cell and organellar compartments (approximately 80%). KEGG Pathway mapping showed the putative P. carinii genes represented most standard metabolic pathways and cellular processes, including the tricarboxylic acid cycle, glycolysis, amino acid biosynthesis, cell cycle and mitochondrial function. Several gene homologs associated with mating, meiosis, and sterol biosynthesis in fungi were identified. Genes encoding the major surface glycoprotein family (MSG), heat shock (HSP70), and proteases (PROT/KEX) were the most abundantly expressed of known P. carinii genes. The apparent presence of many metabolic pathways in P. carinii, sexual reproduction within the host, and lack of an invasive infection process in the immunologically intact host suggest members of the genus Pneumocystis may be adapted parasites and have a compatible relationship with their mammalian hosts. This study represents the first characterization of the expressed genes of a non-culturable fungal pathogen of mammals during the infective process.http://europepmc.org/articles/PMC1855432?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Melanie T Cushion
A George Smulian
Bradley E Slaven
Tom Sesterhenn
Jonathan Arnold
Chuck Staben
Aleksey Porollo
Rafal Adamczak
Jarek Meller
spellingShingle Melanie T Cushion
A George Smulian
Bradley E Slaven
Tom Sesterhenn
Jonathan Arnold
Chuck Staben
Aleksey Porollo
Rafal Adamczak
Jarek Meller
Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
PLoS ONE
author_facet Melanie T Cushion
A George Smulian
Bradley E Slaven
Tom Sesterhenn
Jonathan Arnold
Chuck Staben
Aleksey Porollo
Rafal Adamczak
Jarek Meller
author_sort Melanie T Cushion
title Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
title_short Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
title_full Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
title_fullStr Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
title_full_unstemmed Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
title_sort transcriptome of pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2007-05-01
description Members of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better understand the pathological process, about 4500 ESTS derived from sequencing of the poly(A) tail ends of P. carinii mRNAs during fulminate infection were annotated and functionally characterized as unassembled reads, and then clustered and reduced to a unigene set with 1042 members. Because of the presence of sequences from other microbial genomes and the rat host, the analysis and compression to a unigene set was necessarily an iterative process. BLASTx analysis of the unassembled reads (UR) vs. the Uni-Prot and TREMBL databases revealed 56% had similarities to existing polypeptides at E values of<or=10(-6), with the remainder lacking any significant homology. The most abundant transcripts in the UR were associated with stress responses, energy production, transcription and translation. Most (70%) of the UR had similarities to proteins from filamentous fungi (e.g., Aspergillus, Neurospora) and existing P. carinii gene products. In contrast, similarities to proteins of the yeast-like fungi, Schizosaccharomyces pombe and Saccharomyces cerevisiae, predominated in the unigene set. Gene Ontology analysis using BLAST2GO revealed P. carinii dedicated most of its transcripts to cellular and physiological processes ( approximately 80%), molecular binding and catalytic activities (approximately 70%), and were primarily derived from cell and organellar compartments (approximately 80%). KEGG Pathway mapping showed the putative P. carinii genes represented most standard metabolic pathways and cellular processes, including the tricarboxylic acid cycle, glycolysis, amino acid biosynthesis, cell cycle and mitochondrial function. Several gene homologs associated with mating, meiosis, and sterol biosynthesis in fungi were identified. Genes encoding the major surface glycoprotein family (MSG), heat shock (HSP70), and proteases (PROT/KEX) were the most abundantly expressed of known P. carinii genes. The apparent presence of many metabolic pathways in P. carinii, sexual reproduction within the host, and lack of an invasive infection process in the immunologically intact host suggest members of the genus Pneumocystis may be adapted parasites and have a compatible relationship with their mammalian hosts. This study represents the first characterization of the expressed genes of a non-culturable fungal pathogen of mammals during the infective process.
url http://europepmc.org/articles/PMC1855432?pdf=render
work_keys_str_mv AT melanietcushion transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT ageorgesmulian transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT bradleyeslaven transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT tomsesterhenn transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT jonathanarnold transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT chuckstaben transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT alekseyporollo transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT rafaladamczak transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
AT jarekmeller transcriptomeofpneumocystiscariniiduringfulminateinfectioncarbohydratemetabolismandtheconceptofacompatibleparasite
_version_ 1725140490103291904