ANALISIS ALIRAN ANGIN PADA ATAP MIRING MELALUI UJI SIMULASI FLOW DESIGN
Bidang penelitian tentang aliran angin pada bangunan sangat penting baik untuk perencanaan bangunan maupun pemukiman. Aliran angin yang mempengaruhi bangunan memiliki dampak pada ketahanan struktural terhadap angin. Penelitian dilakukan untuk mengetahui nilai drag coefficient atau gaya hambat terhad...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tanjungpura University
2017-12-01
|
Series: | Langkau Betang: Jurnal Arsitektur |
Online Access: | http://jurnal.untan.ac.id/index.php/lb/article/view/23252 |
Summary: | Bidang penelitian tentang aliran angin pada bangunan sangat penting baik untuk perencanaan bangunan maupun pemukiman. Aliran angin yang mempengaruhi bangunan memiliki dampak pada ketahanan struktural terhadap angin. Penelitian dilakukan untuk mengetahui nilai drag coefficient atau gaya hambat terhadap angin yang dihasilkan pada atap miring dengan nilai sudut yang berbeda. Metode yang digunakan adalah dengan menguji model atap melalui simulasi CFD (Computational Fluid Dynamic) pada software Autodesk Flow Design. Hasil uji lima atap miring dengan nilai 0o, 15o, 30o, 45o, dan 60o menujukkan bahwa semakin besar sudut atap maka semakin besar luas bidang atap yang bersentuhan dengan aliran angin datang, hal ini sejalan dengan nilai average drag coefficient yang dihasilkan. Atap dengan sudut 60o memiliki luas bidang atap dan nilai average drag coefficient yang tertinggi diantara kelima sudut atap yang diuji, dengan nilai luas 72 m2 menghasilkan nilai average drag coefficient sebesar 1,4. Bangunan dengan nilai drag coefficient yang tinggi memiliki resiko kerusakan struktur yang tinggi akibat angin karena memiliki bentuk yang kurang aerodinamis.
Kata-kata Kunci: aliran angin, atap miring, Flow Design, drag coefficient.
ANALYSIS OF WIND FLOW PATTERN ON SLOPED ROOF USING FLOW DESIGN SIMULATION
The field of research on wind flow on buildings is important for both building planning and planning a residential areas. Wind flow affecting the building has an impact on structural resistance to the wind. The study was conducted to find out the value of drag coefficient or drag force against the wind generated on the sloped roof with different angle values. The method applied by tested the roof model through CFD (Computational Fluid Dynamic) simulation through Autodesk Flow Design software. The test results of five sloped roofs with angle 0o, 15o, 30o, 45o, and 60o showed that the higher the angle of the roof, the larger the area of the roof in contact with the approaching wind flow. This is in line with the average drag coefficient value generated. The roof with an angle of 60o has a large roof area and the highest average drag coefficient among the five tested roof angles, with an area of 72 m2 yields and average drag coefficient of 1.4. Buildings with high drag coefficient value have a high risk of structural damage due to wind because it has a less aerodynamic shape.
Keywords: wind flow, sloped roof, Flow Design, drag coefficient
REFERENCES
Autodeks Help (2015), Get Started With Autodesk Flow Design, https://www.autodesk.com/products/flow-design/overview (diakses tanggal 5 November 2017)
Bhandari NM, Krishna P. (2011) An Explanatory handbook on proposed IS- 875 (Part 3): Wind loads on buildings and structure. IITK-GSDMA Project on Building Codes.
Boutet, T. (1987). Controlling Air Movement. New York: McGraw Hill.
Chung, TJ., (2010), Computational Fluid Dynamic. Cambridge: Cambidge University Press.
Driss, S., Driss, Z., & Kammoun, I. K. (2014). Impact of Shape of Obstacle Roof on the Turbulent Flow in a Wind Tunnel. American Journal of Energy Research, 90-98.
Groat, Linda N., David Wang (2002), Architectural Research Methods, New York: John Wiley and Sons.
Guirguis, N., El-Aziz, A. A., & Nassief, M. (2007). Study of wind effects on different buildings of pitched roofs. Desalination, 190–198.
Lechner, N. (2007). Heating, Cooling, Lighting: Metode Desain untuk Arsitektur. Jakarta: Rajawali.
Lippsmeier, G. (1997). Bangunan Tropis. Jakarta: Erlangga.
Mujiasih, S., & Primadi S.T., (2014), Analisis Kejadian Puting Beliung Tanggal 11 Desember 2013 di Wilayah Denpasar Bagian Selatan–Bali, Prosiding Workhop Operasional Radar dan Satelit Cuaca, Jakarta: BMKG.
Stathopoulos and B.A. Baskaran, (1996) “Computer simulation of wind environmental conditions around buildings”, Engineering Structures, 18(11), 876-885.
Szokolay, N. V. (1980). Environmental Science Handbook. New York: Wiley.
Tominaga, Y., Akabayashi, S., Kitahara, T., & Arinami, Y. (2015). Air flow around isolated gable-roof building with different roof pitches: Wind Tunnel experiments and CFD Simulation. Building and Environment, 204-213. |
---|---|
ISSN: | 2355-2484 2550-1194 |