Cosmic Consequences of Kaniadakis and Generalized Tsallis Holographic Dark Energy Models in the Fractal Universe

We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the interacting (Γ=3Hb2ρm) and noninteracting (b2=0...

Full description

Bibliographic Details
Main Authors: Abdul Jawad, Abdul Malik Sultan
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2021/5519028
Description
Summary:We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the interacting (Γ=3Hb2ρm) and noninteracting (b2=0) cases through different cosmological parameters. Accelerated expansion of the universe is justified for both models through deceleration parameter q. In this way, the equation of state parameter ωd describes the phantom and quintessence phases of the universe. However, the coincidence parameter r~=Ωm/Ωd shows the dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with recent observations.
ISSN:1687-7365