Induction of spontaneous curvature and endocytosis: Unwanted consequences of cholesterol extraction using methyl-β-Cyclodextrin

Membrane curvature is a property of biological membranes essential for organelle morphology and the formation of tubulovesicular carriers. Curvature generation is influenced by the lipid composition of the membrane and protein-mediated processes. Lipids with small headgroups, such as phosphatidic ac...

Full description

Bibliographic Details
Main Authors: Takashi Hirama, Gregory D. Fairn
Format: Article
Language:English
Published: Taylor & Francis Group 2018-03-01
Series:Communicative & Integrative Biology
Subjects:
Online Access:http://dx.doi.org/10.1080/19420889.2018.1444306
Description
Summary:Membrane curvature is a property of biological membranes essential for organelle morphology and the formation of tubulovesicular carriers. Curvature generation is influenced by the lipid composition of the membrane and protein-mediated processes. Lipids with small headgroups, such as phosphatidic acid, are conical and impose negative curvature on a monolayer. Conversely, lipids with large headgroups relative to the hydrophobic tail(s), such as lysophosphatidylcholine, have an inverted conical shape and impose positive curvature. Due to its abundance and high rates of spontaneous flip-flop between membrane leaflets cholesterol is proposed to buffer the formation of membrane curvature. Recently, we demonstrated that cholesterol is also crucial for maintaining the proper spacing of anionic phospholipids. Upon extraction of cholesterol with cyclodextrin there is a sharp increase in the negative surface charge density of the plasma membrane, which promotes electrostatic repulsion between anionic headgroups, the generation of spontaneous positive curvature and rapid membrane internalization.
ISSN:1942-0889