Quantitation and modeling of post-translational modifications in a therapeutic monoclonal antibody from single- and multiple-dose monkey pharmacokinetic studies using mass spectrometry.

Post-translational modifications (PTMs) of therapeutic monoclonal antibodies (mAbs) are important product quality attributes (PQAs) that can potentially impact drug stability, safety, and efficacy. The PTMs of a mAb may change remarkably in the bloodstream after drug administration compared to in vi...

Full description

Bibliographic Details
Main Authors: Xiaobin Xu, Yu Huang, Hao Pan, Rosalynn Molden, Haibo Qiu, Thomas J Daly, Ning Li
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0223899
Description
Summary:Post-translational modifications (PTMs) of therapeutic monoclonal antibodies (mAbs) are important product quality attributes (PQAs) that can potentially impact drug stability, safety, and efficacy. The PTMs of a mAb may change remarkably in the bloodstream after drug administration compared to in vitro conditions. Thus, monitoring in vivo PTM changes of mAbs helps evaluate the criticality of PQAs during the product risk assessment. In addition, quantitation of the subject exposures to PTM variants helps assess the impact of PTMs on the safety and efficacy of therapeutic mAbs. Here, we developed an immunocapture-liquid chromatography/mass spectrometry (LC/MS) method to quantify in vivo PTM changes a therapeutic mAb overtime in single- and multiple-dose monkey pharmacokinetic (PK) studies. We also built mathematical models to predict the in vivo serum concentrations of PQAs, the subject exposures to PQAs, and the relative abundance of PQAs in single- and multiple-dose regimens. The model predictions are in good agreement with the experimental results. The immunocapture-LC/MS method and mathematical models enable bioanalytical chemists to quantitatively assess the criticality of PQAs during drug development.
ISSN:1932-6203