The mechanics-modulated tunneling spectrum and low-pass effect of viscoelastic molecular monolayer
Understanding the force-induced conductance fluctuation in molecules is essential for building molecular devices with high stability. While stiffness of molecule is usually considered to be desirable for stable conductance, we demonstrate mechanical dragging in viscoelastic molecules integrates both...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2017-10-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5003766 |
Summary: | Understanding the force-induced conductance fluctuation in molecules is essential for building molecular devices with high stability. While stiffness of molecule is usually considered to be desirable for stable conductance, we demonstrate mechanical dragging in viscoelastic molecules integrates both noise resistance and mechanical controllability to molecular conductance. Via conductive atomic force microscope measurement and theoretical modeling, it’s found that viscoelastic Azurin monolayer has spectrum-like pattern of conductance corresponding to the duration and strength of applied mechanical pulse under low-frequency excitation. Conductance fluctuation is prevented under high-frequency excitation by dragging dissipation, which qualifies molecular junction with electric robustness against mechanical noise. |
---|---|
ISSN: | 2158-3226 |