A New Coated Nitinol Occluder for Transcatheter Closure of Ventricular Septal Defects in a Canine Model

Aims. This study evaluated feasibility and safety of implanting the polyester-coated nitinol ventricular septal defect occluder (pcVSDO) in the canine model. Methods and Results. VSD models were successfully established by transseptal ventricular septal puncture via the right jugular vein in 15 out...

Full description

Bibliographic Details
Main Authors: Yong Zhou, Feng Chen, Xinmiao Huang, Xianxian Zhao, Hong Wu, Yuan Bai, Yongwen Qin
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2013/507919
Description
Summary:Aims. This study evaluated feasibility and safety of implanting the polyester-coated nitinol ventricular septal defect occluder (pcVSDO) in the canine model. Methods and Results. VSD models were successfully established by transseptal ventricular septal puncture via the right jugular vein in 15 out of 18 canines. Two types of VSDOs were implanted, either with pcVSDOs (n=8) as the new type occluder group or with the commercial ventricular septal defect occluders (VSDOs, n=7, Shanghai Sharp Memory Alloy Co. Ltd.) as the control group. Sheath size was 10 French (10 Fr) in two groups. Then the general state of the canines was observed after implantation. ECG and TTE were performed, respectively, at 7, 30, 90 days of follow-up. The canines were sacrificed at these time points for pathological and scanning electron microscopy examination. The devices were successfully implanted in all 15 canines and were retrievable and repositionable. There was no thrombus formation on the device or occurrence of complete heart block. The pcVSDO surface implanted at day 7 was already covered with neotissue by gross examination, and it completed endothelialization at day 30, while the commercial VSDO was covered with the neotissue in 30th day and the complete endothelialization in 90th day. Conclusion. The study shows that pcVSDO is feasible and safe to close canine VSD model and has good biocompatibility and shorter time of endothelialization.
ISSN:2314-6133
2314-6141