Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads
Development of a microbiosensor based on immobilized living chromatophores of Siamese fighting fish, Betta splendens, for the detection of microbial and environmental toxins is described in this paper. Chromatophores were immobilized on ferromagnetic gelatin microbeads (d=250 m). Kinetics of cell at...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zagreb
2005-01-01
|
Series: | Food Technology and Biotechnology |
Subjects: | |
Online Access: | http://hrcak.srce.hr/file/162584 |
id |
doaj-bc608f966fb24310bdddedbe79417cc5 |
---|---|
record_format |
Article |
spelling |
doaj-bc608f966fb24310bdddedbe79417cc52020-11-25T03:00:01ZengUniversity of ZagrebFood Technology and Biotechnology1330-98621334-26062005-01-0143117Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin BeadsGoran N. Jovanović0Ljiljana V. Mojović1Oregon State University, 103 Gleeson Hall, Corvallis, OR 97331, USAFaculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, SCG-1100 Belgrade, Serbia and MontenegroDevelopment of a microbiosensor based on immobilized living chromatophores of Siamese fighting fish, Betta splendens, for the detection of microbial and environmental toxins is described in this paper. Chromatophores were immobilized on ferromagnetic gelatin microbeads (d=250 m). Kinetics of cell attachment, immobilization efficiency, population density, and an optimum content of ferromagnetic powder (iron(II,III) oxide, dp<5 m) with respect to preservation of the viability of cells was studied. The rate of cell attachment to the gelatin microbeads followed first-order kinetics with attachment efficiency of more than 95 %. Pretreatment of beads with fibronectin, known as a cell attachment promoting agent, resulted in a 10 % increase of the attachment rate constant compared to the attachment rate constant obtained without fibronectin. A detrimental effect on cell viability was observed when more than 10 % of ferromagnetic material was added to the beads. Operation of microbiosensor was tested with the neurotoxin analog clonidine as a model toxin. A double-exponential model is proposed to describe the toxin-induced change of cell area covered with pigment. Experimental data fitted well the proposed model.http://hrcak.srce.hr/file/162584microbiosensorimmobilizationchromatophoreferromagnetic gelatin beadsmodel toxin |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Goran N. Jovanović Ljiljana V. Mojović |
spellingShingle |
Goran N. Jovanović Ljiljana V. Mojović Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads Food Technology and Biotechnology microbiosensor immobilization chromatophore ferromagnetic gelatin beads model toxin |
author_facet |
Goran N. Jovanović Ljiljana V. Mojović |
author_sort |
Goran N. Jovanović |
title |
Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads |
title_short |
Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads |
title_full |
Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads |
title_fullStr |
Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads |
title_full_unstemmed |
Development of a Microbiosensor Based on Fish Chromatophores Immobilized on Ferromagnetic Gelatin Beads |
title_sort |
development of a microbiosensor based on fish chromatophores immobilized on ferromagnetic gelatin beads |
publisher |
University of Zagreb |
series |
Food Technology and Biotechnology |
issn |
1330-9862 1334-2606 |
publishDate |
2005-01-01 |
description |
Development of a microbiosensor based on immobilized living chromatophores of Siamese fighting fish, Betta splendens, for the detection of microbial and environmental toxins is described in this paper. Chromatophores were immobilized on ferromagnetic gelatin microbeads (d=250 m). Kinetics of cell attachment, immobilization efficiency, population density, and an optimum content of ferromagnetic powder (iron(II,III) oxide, dp<5 m) with respect to preservation of the viability of cells was studied. The rate of cell attachment to the gelatin microbeads followed first-order kinetics with attachment efficiency of more than 95 %. Pretreatment of beads with fibronectin, known as a cell attachment promoting agent, resulted in a 10 % increase of the attachment rate constant compared to the attachment rate constant obtained without fibronectin. A detrimental effect on cell viability was observed when more than 10 % of ferromagnetic material was added to the beads. Operation of microbiosensor was tested with the neurotoxin analog clonidine as a model toxin. A double-exponential model is proposed to describe the toxin-induced change of cell area covered with pigment. Experimental data fitted well the proposed model. |
topic |
microbiosensor immobilization chromatophore ferromagnetic gelatin beads model toxin |
url |
http://hrcak.srce.hr/file/162584 |
work_keys_str_mv |
AT gorannjovanovic developmentofamicrobiosensorbasedonfishchromatophoresimmobilizedonferromagneticgelatinbeads AT ljiljanavmojovic developmentofamicrobiosensorbasedonfishchromatophoresimmobilizedonferromagneticgelatinbeads |
_version_ |
1724699857760813056 |