Fast and Accurate Thickness Mapping of Thin Liquid Films
The thickness of thin liquid films is of great interest to industrial processes and life science. However, there are not appropriate quantitative experimental tools for an adequate study of film evolution in case of not-ideal conditions. Here, we show the application of a holographic system for the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://www.epj-conferences.org/articles/epjconf/pdf/2019/20/epjconf_eos18_12002.pdf |
Summary: | The thickness of thin liquid films is of great interest to industrial processes and life science. However, there are not appropriate quantitative experimental tools for an adequate study of film evolution in case of not-ideal conditions. Here, we show the application of a holographic system for the evaluation of the 3D topography and thickness of evolving protein films. We use a custom holographic microscope that combines quantitative phase imaging with materials engineering. This technique offers an unprecedented level of details and we anticipate that it will promote a deeper understanding of the underlying physics of thin film dynamics. |
---|---|
ISSN: | 2100-014X |