Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent
Let Ω ∈ L 2 ( S n − 1 ) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent. Keywords: Herz space, Variable expon...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-08-01
|
Series: | Transactions of A. Razmadze Mathematical Institute |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2346809216300861 |
id |
doaj-bc403238a9904a23aafd491f35d8fe8c |
---|---|
record_format |
Article |
spelling |
doaj-bc403238a9904a23aafd491f35d8fe8c2020-11-24T20:47:34ZengElsevierTransactions of A. Razmadze Mathematical Institute2346-80922017-08-011712238251Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponentHongbin Wang0Yihong Wu1School of Science, Shandong University of Technology, Zibo 255049, China; Corresponding author.Department of Recruitment and Employment, Zibo Normal College, Zibo 255130, ChinaLet Ω ∈ L 2 ( S n − 1 ) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent. Keywords: Herz space, Variable exponent, Commutator, Parametrized area integral, Parametrized Littlewood–Paley g λ∗ functionhttp://www.sciencedirect.com/science/article/pii/S2346809216300861 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hongbin Wang Yihong Wu |
spellingShingle |
Hongbin Wang Yihong Wu Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent Transactions of A. Razmadze Mathematical Institute |
author_facet |
Hongbin Wang Yihong Wu |
author_sort |
Hongbin Wang |
title |
Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent |
title_short |
Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent |
title_full |
Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent |
title_fullStr |
Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent |
title_full_unstemmed |
Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent |
title_sort |
higher-order commutators of parametrized littlewood–paley operators on herz spaces with variable exponent |
publisher |
Elsevier |
series |
Transactions of A. Razmadze Mathematical Institute |
issn |
2346-8092 |
publishDate |
2017-08-01 |
description |
Let Ω ∈ L 2 ( S n − 1 ) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent. Keywords: Herz space, Variable exponent, Commutator, Parametrized area integral, Parametrized Littlewood–Paley g λ∗ function |
url |
http://www.sciencedirect.com/science/article/pii/S2346809216300861 |
work_keys_str_mv |
AT hongbinwang higherordercommutatorsofparametrizedlittlewoodpaleyoperatorsonherzspaceswithvariableexponent AT yihongwu higherordercommutatorsofparametrizedlittlewoodpaleyoperatorsonherzspaceswithvariableexponent |
_version_ |
1716809576792195072 |