Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent
Let Ω ∈ L 2 ( S n − 1 ) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent. Keywords: Herz space, Variable expon...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-08-01
|
Series: | Transactions of A. Razmadze Mathematical Institute |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2346809216300861 |
Summary: | Let Ω ∈ L 2 ( S n − 1 ) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent. Keywords: Herz space, Variable exponent, Commutator, Parametrized area integral, Parametrized Littlewood–Paley g λ∗ function |
---|---|
ISSN: | 2346-8092 |