Summary: | Traffic speed prediction for a selected road segment from a short-term and long-term perspective is among the fundamental issues of intelligent transportation systems (ITS). During the course of the past two decades, many artefacts (e.g., models) have been designed dealing with traffic speed prediction. However, no satisfactory solution has been found for the issue of a long-term prediction for days and weeks using the vast spatial and temporal data. This article aims to introduce a long-term traffic speed prediction ensemble model using country-scale historic traffic data from 37,002 km of roads, which constitutes 66% of all roads in the Czech Republic. The designed model comprises three submodels and combines parametric and nonparametric approaches in order to acquire a good-quality prediction that can enrich available real-time traffic information. Furthermore, the model is set into a conceptual design which expects its usage for the improvement of navigation through waypoints (e.g., delivery service, goods distribution, police patrol) and the estimated arrival time. The model validation is carried out using the same network of roads, and the model predicts traffic speed in the period of 1 week. According to the performed validation of average speed prediction at a given hour, it can be stated that the designed model achieves good results, with mean absolute error of 4.67 km/h. The achieved results indicate that the designed solution can effectively predict the long-term speed information using large-scale spatial and temporal data, and that this solution is suitable for use in ITS.
|